The use of plastic-wrapped and nonacidified silage as cattle feed has led to an increasing number of botulism outbreaks due to Clostridium botulinum Groups I-III in dairy cattle. The involvement of Groups I and II organisms in cattle botulism has raised concern of human botulism risk associated with the consumption of dairy products. Multiplication of C. botulinum in silage and in the gastrointestinal tract of cattle with botulism has been reported, thus contamination of the farm environment and raw milk, and further transmission through the dairy chain, are possible. The standard milk pasteurization treatment does not eliminate spores, and the intrinsic factors of many dairy products allow botulinal growth and toxin production. Although rare, several large botulism outbreaks due to both commercial and home-prepared dairy products have been reported. Factors explaining these outbreaks include most importantly temperature abuse, but also unsafe formulation, inadequate fermentation, insufficient thermal processing, post-process contamination, and lack of adequate quality control for adjunct ingredients were involved. The small number of outbreaks is probably explained by a low incidence of spores in milk, the presence of competitive bacteria in pasteurized milk and other dairy products, and growth-inhibitory combinations of intrinsic and extrinsic factors in cultured and processed dairy products.
The first reported bovine botulism outbreak in Finland is described. Nine out of 90 cattle on a dairy farm died after being fed non-acidified silage contaminated by animal carcasses. Type C botulinum neurotoxin gene was detected in one heifer by polymerase chain reaction (PCR) and the neurotoxin was detected by the mouse bioassay. Clostridium botulinum type C was isolated from liver samples. The isolated strain was identified with amplified fragment length polymorphism (AFLP) analysis as group III C. botulinum. To our knowledge, this is the first time that a type C bovine botulism outbreak has been diagnosed by PCR and confirmed by subsequent isolation and AFLP identification of the disease strain. The importance of the acidification process in silage production to inhibit C. botulinum toxin production in silage and thus to prevent further botulism outbreaks is emphasized. Nevertheless, preformed toxin in the carcass is not destroyed by acid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.