Recently there has been a significant effort to handle quantitative properties in formal verification and synthesis. While weighted automata over finite and infinite words provide a natural and flexible framework to express quantitative properties, perhaps surprisingly, some basic system properties such as average response time cannot be expressed using weighted automata, nor in any other know decidable formalism. In this work, we introduce nested weighted automata as a natural extension of weighted automata which makes it possible to express important quantitative properties such as average response time. In nested weighted automata, a master automaton spins off and collects results from weighted slave automata, each of which computes a quantity along a finite portion of an infinite word. Nested weighted automata can be viewed as the quantitative analogue of monitor automata, which are used in run-time verification. We establish an almost complete decidability picture for the basic decision problems about nested weighted automata, and illustrate their applicability in several domains. In particular, nested weighted automata can be used to decide average response time properties.
Abstract-The target discounted-sum problem is the following: Given a rational discount factor 0 < λ < 1 and three rational values a, b, and t, does there exist a finite or an infinite sequence w ∈ {a, b} * or w ∈ {a, b} ω , such that |w| i=0 w(i)λ i equals t? The problem turns out to relate to many fields of mathematics and computer science, and its decidability question is surprisingly hard to solve.We solve the finite version of the problem, and show the hardness of the infinite version, linking it to various areas and open problems in mathematics and computer science: β-expansions, discounted-sum automata, piecewise affine maps, and generalizations of the Cantor set. We provide some partial results to the infinite version, among which are solutions to its restriction to eventually-periodic sequences and to the cases that λ ≥ 1 2 or λ = 1 n , for every n ∈ N. We use our results for solving some open problems on discounted-sum automata, among which are the exact-value problem for nondeterministic automata over finite words and the universality and inclusion problems for functional automata.
Abstract. We define the model-measuring problem: given a model M and specification ϕ, what is the maximal distance ρ such that all models M within distance ρ from M satisfy (or violate) ϕ. The model measuring problem presupposes a distance function on models. We concentrate on automatic distance functions, which are defined by weighted automata. The model-measuring problem subsumes several generalizations of the classical model-checking problem, in particular, quantitative model-checking problems that measure the degree of satisfaction of a specification, and robustness problems that measure how much a model can be perturbed without violating the specification. We show that for automatic distance functions, and ω-regular linear-time and branchingtime specifications, the model-measuring problem can be solved. We use automata-theoretic model-checking methods for model measuring, replacing the emptiness question for standard word and tree automata by the optimal-weight question for the weighted versions of these automata. We consider weighted automata that accumulate weights by maximizing, summing, discounting, and limit averaging. We give several examples of using the model-measuring problem to compute various notions of robustness and quantitative satisfaction for temporal specifications.
No abstract
We study multimodal logics over universally first-order definable classes of frames. We show that even for bimodal logics, there are universal Horn formulas that define set of frames such that the satisfiability problem is undecidable, even if one or two of the binary relations are transitive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.