Co-cultures of endothelial cells (EC) and mesenchymal stem cells (MSC) in three-dimensional (3D) protein hydrogels can be used to recapitulate aspects of vasculogenesis in vitro. MSC provide paracrine signals that stimulate EC to form vessel-like structures, which mature as the MSC transition to the role of mural cells. In this study, vessel-like network formation was studied using 3D collagen/fibrin (COL/FIB) matrices seeded with embedded EC and MSC and cultured for 7 days. The EC:MSC ratio was varied from 5:1, 3:2, 1:1, 2:3 and 1:5. The matrix composition was varied at COL/FIB compositions of 100/0 (pure COL), 60/40, 50/50, 40/60 and 0/100 (pure FIB). Vasculogenesis was markedly decreased in the highest EC:MSC ratio, relative to the other cell ratios. Network formation increased with increasing fibrin content in composite materials, although the 40/60 COL/FIB and pure fibrin materials exhibited the same degree of vasculogenesis. EC and MSC were co-localized in vessel-like structures after 7 days and total cell number increased by approximately 70%. Mechanical property measurements showed an inverse correlation between matrix stiffness and network formation. The effect of matrix stiffness was further investigated using gels made with varying total protein content and by crosslinking the matrix using the dialdehyde glyoxal. This systematic series of studies demonstrates that matrix composition regulates vasculogenesis in 3D protein hydrogels, and further suggests that this effect may be caused by matrix mechanical properties. These findings have relevance to the study of neovessel formation and the development of strategies to promote vascularization in transplanted tissues.
Carbon nanotubes (CNT) are attractive for use in fiber-reinforced composite materials due to their very high aspect ratio, combined with outstanding mechanical and electrical properties. Composite materials comprising a collagen matrix with embedded CNT were prepared by mixing solubilized Type I collagen with solutions of carboxylated single-walled carbon nanotubes (SWNT) at concentrations of 0, 0.2, 0.4, 0.8, and 2.0 weight percent. Living smooth muscle cells were incorporated at the time of collagen gelation to produce cell-seeded collagen-CNT composite matrices. Constructs containing 2.0 wt % CNT exhibited delayed gel compaction, relative to lower concentrations that compacted at the same rate as pure collagen controls. Cell viability in all constructs was consistently above 85% at both Day 3 and Day 7, whereas cell number in CNT-containing constructs was lower than in control constructs at Day 3, though statistically unchanged by Day 7. Scanning electron microscopy showed physical interactions between CNT and collagen matrix. Raman spectroscopy confirmed the presence of CNT at the expected diameter (0.85-1.30 nm), but did not indicate strong molecular interactions between the collagen and CNT components. Such collagen-CNT composite matrices may have utility as scaffolds in tissue engineering, or as components of biosensors or other medical devices.
Chitosan and collagen type I are naturally-derived materials used as cell carriers because of their ability to mimic the extracellular environment and direct cell function. In this study beta-glycerophosphate (beta-GP), an osteogenic medium supplement and a weak base, was used to simultaneously initiate gelation of pure chitosan, pure collagen, and chitosan-collagen composite materials at physiological pH and temperature. Adult human bone marrow-derived stem cells (hBMSC) encapsulated in such hydrogels at chitosan/collagen ratios of 100/0, 65/35, 25/75, and 0/100 wt% exhibited high viability at day 1 after encapsulation, but DNA content dropped by about half over 12 days in pure chitosan materials while it increased two-fold in materials containing collagen. Collagen-containing materials compacted more strongly and were significantly stiffer than pure chitosan gels. In monolayer culture, exposure of hBMSC to beta-GP resulted in decreased cell metabolic activity that varied with concentration and exposure time, but washing effectively removed excess beta-GP from hydrogels. The presence of chitosan in materials resulted in higher expression of osterix and bone sialoprotein genes in medium with and without osteogenic supplements. Chitosan also increased alkaline phosphatase activity and calcium deposition in osteogenic medium. Chitosan-collagen composite materials have potential as matrices for cell encapsulation and delivery, or as in situ gel-forming materials for tissue repair.
The vascular smooth muscle cell (VSMC) is surrounded by a complex extracellular matrix that provides and modulates a variety of biochemical and mechanical cues that guide cell function. Conventional two-dimensional monolayer culture systems recreate only a portion of the cellular environment, and therefore there is increasing interest in developing more physiologically relevant three-dimensional culture systems. This review brings together recent studies on how mechanical, biochemical, and extracellular matrix stimulation can be applied to study VSMC function and how the combination of these factors leads to changes in phenotype. Particular emphasis is placed on in vitro experimental studies in which multiple stimuli are combined, especially in three-dimensional culture systems and in vascular tissue engineering applications. These studies have provided new insight into how VSMC phenotype is controlled, and they have underscored the interdependence of biochemical and mechanical signaling. Future improvements in creating more complex in vitro culture environments will lead to a better understanding of VSMC biology, new treatments for vascular disease, as well as improved blood vessel substitutes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.