Effective customer loyalty programs are essential for every company. Small and medium sized brick-andmortar stores, such as bakeries, butcher and flower shops, often share a common overarching loyalty program, organized by a third-party provider. Furthermore, these small shops have limited resources and often cannot afford complex BI tools. Out of these reasons we investigated how traditional brick-andmortar stores can benefit from an expansion of service functionalities of a loyalty card provider. To answer this question, we cooperated with a cross-industry customer loyalty program in a polycentric region. The loyalty program was transformed from simple card-based solution to a mobile app for customers and a webapplication for shop owners. The new solution offers additional BI services for performing data analytics and strengthening the position of brick-and-mortar stores. Participating shops can work together in order to increase sales and align marketing campaigns. Therefore, shopping data from 12 years, 55 shops, and 19,000 customers was analyzed.
Deep learning models fuel many modern decision support systems, because they typically provide high predictive performance. Among other domains, deep learning is used in real-estate appraisal, where it allows to extend the analysis from hard facts only (e.g., size, age) to also consider more implicit information about the location or appearance of houses in the form of image data. However, one downside of deep learning models is their intransparent mechanic of decision making, which leads to a trade-off between accuracy and interpretability. This limits their applicability for tasks where a justification of the decision is necessary. Therefore, in this paper, we first combine different perspectives on interpretability into a multi-dimensional framework for a socio-technical perspective on explainable artificial intelligence. Second, we measure the performance gains of using multi-view deep learning which leverages additional image data (satellite images) for real estate appraisal. Third, we propose and test a novel post-hoc explainability method called Grad-Ram. This modified version of Grad-Cam mitigates the intransparency of convolutional neural networks (CNNs) for predicting continuous outcome variables. With this, we try to reduce the accuracy-interpretability trade-off of multi-view deep learning models. Our proposed network architecture outperforms traditional hedonic regression models by 34% in terms of MAE. Furthermore, we find that the used satellite images are the second most important predictor after square feet in our model and that the network learns interpretable patterns about the neighborhood structure and density.
Accurate real estate appraisal is essential in decision making processes of financial institutions, governments, and trending real estate platforms like Zillow.One of the most important factors of a property's value is its location.However, creating accurate quantifications of location remains a challenge.While traditional approaches rely on Geographical Information Systems (GIS), recently unstructured data in form of images was incorporated in the appraisal process, but text data remains an untapped reservoir.Our study shows that using text data in form of geolocated Wikipedia articles can increase predictive performance over traditional GIS-based methods by 8.2% in spatial out-of-sample validation.A framework to automatically extract geographically weighted vector representations for text is established and used alongside traditional structural housing features to make predictions and to uncover local patterns on sale price for real estate transactions between 2015 and 2020 in Allegheny County, Pennsylvania.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.