Figure 1: Our dataset provides dense annotations for each scan of all sequences from the KITTI Odometry Benchmark [19]. Here, we show multiple scans aggregated using pose information estimated by a SLAM approach.
AbstractSemantic scene understanding is important for various applications. In particular, self-driving cars need a finegrained understanding of the surfaces and objects in their vicinity. Light detection and ranging (LiDAR) provides precise geometric information about the environment and is thus a part of the sensor suites of almost all self-driving cars. Despite the relevance of semantic scene understanding for this application, there is a lack of a large dataset for this task which is based on an automotive LiDAR.In this paper, we introduce a large dataset to propel research on laser-based semantic segmentation. We annotated all sequences of the KITTI Vision Odometry Benchmark and provide dense point-wise annotations for the complete 360 o field-of-view of the employed automotive LiDAR. We propose three benchmark tasks based on this dataset: (i) semantic segmentation of point clouds using a single scan, (ii) semantic segmentation using multiple past scans, and (iii) semantic scene completion, which requires to anticipate the semantic scene in the future. We provide baseline experiments and show that there is a need for more sophisticated models to efficiently tackle these tasks. Our dataset opens the door for the development of more advanced methods, but also provides plentiful data to investigate new research directions. * indicates equal contribution
The Mohamed Bin Zayed International Robotics Challenge (MBZIRC) 2017 has defined ambitious new benchmarks to advance the state‐of‐the‐art in autonomous operation of ground‐based and flying robots. This study covers our approaches to solve the two challenges that involved micro aerial vehicles (MAV). Challenge 1 required reliable target perception, fast trajectory planning, and stable control of an MAV to land on a moving vehicle. Challenge 3 demanded a team of MAVs to perform a search and transportation task, coined “Treasure Hunt,” which required mission planning and multirobot coordination as well as adaptive control to account for the additional object weight. We describe our base MAV setup and the challenge‐specific extensions, cover the camera‐based perception, explain control and trajectory‐planning in detail, and elaborate on mission planning and team coordination. We evaluated our systems in simulation as well as with real‐robot experiments during the competition in Abu Dhabi. With our system, we—as part of the larger team NimbRo—won the MBZIRC Grand Challenge and achieved a third place in both subchallenges involving flying robots.
A holistic semantic scene understanding exploiting all available sensor modalities is a core capability to master self-driving in complex everyday traffic. To this end, we present the SemanticKITTI dataset that provides point-wise semantic annotations of Velodyne HDL-64E point clouds of the KITTI Odometry Benchmark. Together with the data, we also published three benchmark tasks for semantic scene understanding covering different aspects of semantic scene understanding: (1) semantic segmentation for point-wise classification using single or multiple point clouds as input; (2) semantic scene completion for predictive reasoning on the semantics and occluded regions; and (3) panoptic segmentation combining point-wise classification and assigning individual instance identities to separate objects of the same class. In this article, we provide details on our dataset showing an unprecedented number of fully annotated point cloud sequences, more information on our labeling process to efficiently annotate such a vast amount of point clouds, and lessons learned in this process. The dataset and resources are available at http://www.semantic-kitti.org .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.