The vibro-acoustic response of a structure-liner-fluid system is predicted by application of a patch transfer function (PTF) coupling scheme. In contrast to existing numerical approaches, PTF matrices of structure and liner are determined by a direct experimental approach, avoiding the requirement of material parameters. Emphasis is placed on poroelastic lining materials. The method accounts for surface input and nextneighbour transfer terms and for cross and cross-transfer terms through the specimen. Shear stresses and transfer terms to further patches on the liner are neglected. A single test-rig characterisation procedure for layered poroelastic media is proposed. The specimen is considered as a single component -no separation of layers is performed. For this reason the characterisation procedure can serve as a complement to existing methods if separation of layers is not possible and as a tool for validation of more detailed material models. Problem specific boundary conditions for skeleton and fluid, which may cause non-reciprocal cross terms, are dealt with by the procedure. Methods of measurement for the assessment of PTF matrices are presented and their accuracy and limitations are discussed. An air gap correction method for surface impedance measurements is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.