a b s t r a c tAim: The segmentation of organs from a CT scan is a time-consuming task, which is one hindrance for adaptive radiation therapy. Through deep learning, it is possible to automatically delineate organs. Metrics like dice score do not necessarily represent the impact for clinical practice. Therefore, a clinical evaluation of the deep neural network is needed to verify the segmentation quality. Methods: In this work, a novel deep neural network is trained on 300 CT and 300 artificially generated pseudo CBCTs to segment bladder, prostate, rectum and seminal vesicles from CT and cone beam CT scans. The model is evaluated on 45 CBCT and 5 CT scans through a clinical review performed by three different clinics located in Europe, North America and Australia. Results: The deep learning model is scored either equally good (prostate and seminal vesicles) or better (bladder and rectum) than the structures from routine clinical practice. No or minor corrections are required for 97.5% of the segmentations of the bladder, 91.5% of the prostate, 94% of the rectum and seminal vesicles. Overall, for 82.5% of the patients none of the organs need major corrections or a redraw. Conclusion: This study shows that modern deep neural networks are capable of producing clinically applicable organ segmentation for the male pelvis. The model is able to produce acceptable structures as frequently as current clinical routine. Therefore, deep neural networks can simplify the clinical workflow by offering initial segmentations. The study further shows that to retain the clinicians' personal preferences a structure review and correction is necessary for structures both created by other clinicians and deep neural networks.
Radiation therapy is one of the key cancer treatment options. To avoid adverse effects in the healthy tissue, the treatment plan needs to be based on accurate anatomical models of the patient. In this work, an automatic segmentation solution for both female breasts and the heart is constructed using deep learning. Our newly developed deep neural networks perform better than the current state-of-the-art neural networks while improving inference speed by an order of magnitude. While manual segmentation by clinicians takes around 20 min, our automatic segmentation takes less than a second with an average of 3 min manual correction time. Thus, our proposed solution can have a huge impact on the workload of clinical staff and on the standardization of care.
As artificial intelligence for image segmentation becomes increasingly available, the question whether these solutions generalize between different hospitals and geographies arises. The present study addresses this question by comparing multi-institutional models to site-specific models. Using CT data sets from four clinics for organs-at-risk of the female breast, female pelvis and male pelvis, we differentiate between the effect from population differences and differences in clinical practice. Our study, thus, provides guidelines to hospitals, in which case the training of a custom, hospital-specific deep neural network is to be advised and when a network provided by a third-party can be used. The results show that for the organs of the female pelvis and the heart the segmentation quality is influenced solely on bases of the training set size, while the patient population variability affects the female breast segmentation quality above the effect of the training set size. In the comparison of site-specific contours on the male pelvis, we see that for a sufficiently large data set size, a custom, hospital-specific model outperforms a multi-institutional one on some of the organs. However, for small hospital-specific data sets a multi-institutional model provides the better segmentation quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.