In this paper we review the technologies available to make globally quantitative observations of particles in general-and plankton in particular-in the world oceans, and for sizes varying from sub-microns to centimeters. Some of these technologies have been available for years while others have only recently emerged. Use of these technologies is critical to improve understanding of the processes that control abundances, distributions and composition of plankton, provide data necessary to constrain and improve ecosystem and biogeochemical models, and forecast changes in marine ecosystems in light of climate change. In this paper we begin by providing the motivation for plankton observations, quantification and diversity qualification on a global scale. We then expand on the state-of-the-art, detailing a variety of relevant and (mostly) mature technologies and measurements, including bulk measurements of plankton, pigment composition, uses of genomic, optical and acoustical methods as well
Abstract. The Coastal Observing System for Northern and Arctic Seas (COSYNA) was established in order to better understand the complex interdisciplinary processes of northern seas and the Arctic coasts in a changing environment. Particular focus is given to the German Bight in the North Sea as a prime example of a heavily used coastal area, and Svalbard as an example of an Arctic coast that is under strong pressure due to global change.The COSYNA automated observing and modelling system is designed to monitor real-time conditions and provide short-term forecasts, data, and data products to help assess the impact of anthropogenically induced change. Observations are carried out by combining satellite and radar remote sensing with various in situ platforms. Novel sensors, instruments, and algorithms are developed to further improve the understanding of the interdisciplinary interactions between physics, biogeochemistry, and the ecology of coastal seas. New modelling and data assimilation techniques are used to integrate observations and models in a quasi-operational system providing descriptions and forecasts of key hydrographic variables.
Zooplankton is a key element in aquatic food webs. Rapid mapping of abundance, combined with information on taxonomic and size composition is necessary to understand ecosystem dynamics. Classical sampling with towed plankton nets does not allow resolving fine scale distributions along hydrographic gradients (e.g. fronts and clines) although such structures determine community assemblages and trophic interactions. Furthermore, sample analysis is labor intensive and time consuming. To overcome these shortcomings, Lightframe On-sight Keyspecies Investigation (LOKI), a new imaging device, was developed for sensing spatial variability of plankton distribution on scales below the 1 m level. Here, we give a brief description of the LOKI system and demonstrate its potential for taxonomic identification using images of various zooplankton taxa collected in the south east Pacific.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.