The electron-transfer process of a first generation dendrimer with a triphenylamine core substituted with one peryleneimide chromophore at the rim (N1P1) was investigated by steady-state and time-resolved spectroscopic techniques in two different solvents of medium and low polarity. Single photon counting experiments showed a fast charge separation and a thermally activated back reaction, which is uncommon for a polyaryl bridge or long-distance through-space electron transfer. The four exponential fluorescence decay can be traced to the presence of two subsets of molecules, which are constitutional isomers of N1P1. Although formally N1P1 resembles a donor-bridge-acceptor compound, detailed analysis of the data shows that the electron transfer occurs by a through-space mechanism. This amine core dendrimer has peculiar and unique characteristics resulting in the observation of efficient back transfer and delayed peryleneimide fluorescence in diethyl ether at 293 K and very long-lived charge recombination luminescence at 77 K.
Fluorescein is a complex fluorophore which at the physiological pH can exist as mono-and dianion forms. In a previous article (J. Phys. Chem. A 2001, 105, 6320-6332), we showed that fluorescein displays an excited-state proton transfer reaction which interconverts the mono-and dianion forms in the presence of a suitable proton donor-acceptor. Because fluorescein is a frequently used fluorescent label in biological systems, it is of interest to know if amino acids with acidic side chains are able to induce fluorescein excited-state proton transfer reactions. We have selected (()-N-acetyl aspartic acid, N-AcAsp, as a model donor-acceptor which mimics the interaction of the aspartic acid residues with the fluorescent label in native proteins. We present absorption and emission properties which show that N-AcAsp at 1 M concentration induces the excitedstate proton transfer reaction between the mono-and dianion of fluorescein. The kinetics of this excited-state process was characterized from time-resolved fluorescence measurements, and the analysis was done within the framework of global compartmental analysis. Thus, we have formulated the fluorescence decay analysis of intermolecular two-state excited-state processes in the presence of buffer in terms of compartments. The kinetic equations describing the excited-state species concentrations were derived, and the expressions for the fluorescence decay surface were obtained. The experimental fluorescence decay data surface of fluorescein in the presence of 1 M N-AcAsp concentration at different pH values and excitation and emission wavelengths was analyzed via this new global compartmental analysis method, to recover the rate constants and the spectral parameters related to absorption and emission of the excited-state proton transfer reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.