The electron-transfer process of a first generation dendrimer with a triphenylamine core substituted with one peryleneimide chromophore at the rim (N1P1) was investigated by steady-state and time-resolved spectroscopic techniques in two different solvents of medium and low polarity. Single photon counting experiments showed a fast charge separation and a thermally activated back reaction, which is uncommon for a polyaryl bridge or long-distance through-space electron transfer. The four exponential fluorescence decay can be traced to the presence of two subsets of molecules, which are constitutional isomers of N1P1. Although formally N1P1 resembles a donor-bridge-acceptor compound, detailed analysis of the data shows that the electron transfer occurs by a through-space mechanism. This amine core dendrimer has peculiar and unique characteristics resulting in the observation of efficient back transfer and delayed peryleneimide fluorescence in diethyl ether at 293 K and very long-lived charge recombination luminescence at 77 K.
Intramolecular photoinduced electron transfer in 9-(p-N,N-dimethylanilino)phenanthrene (9DPhen) has been studied in solution. The solvent dependence of the fluorescence spectra of 9DPhen indicates that the emission occurs from a highly polar excited state. The quantum yield of fluorescence (Φ f ) of 9DPhen is quite high and increases with increasing solvent polarity. The radiative rate constant (k f ), however, shows a maximum for solvents of intermediate polarity, e.g., in butyl acetate a value of 2.3 × 10 8 s -1 is attained. These results are difficult to explain within the "TICT" (twisted intramolecular charge transfer) model, which predicts a strongly forbidden fluorescence caused by a minimum overlap of the orbitals involved in the transition. The above-mentioned trend as a function of the solvent polarity is observed in particular donor-acceptor substituted arenes where the L b state of the corresponding arenes is lower in energy than the L a state. The quantum chemical calculations actually could explain this behavior on the basis of an ICT state which interacts with the lower lying 1 L a and 1 L b states of the acceptor. The quantum mechanical mixing of states can occur by two pathways, namely orbital mixing and mixing of configurations, and is modified by geometrical changes and by solvent polarity. The single exponential fluorescence decay, obtained with time-correlated single-photon-timing, suggests emission from an excited charge-transfer state, resulting from a solvent-induced rapid relaxation of the initial delocalized excited state of 9DPhen, obtained immediately after picosecond pulsed excitation. Picosecond transient absorption spectra in acetonitrile show a rapid decay within a few picoseconds from a less polar but delocalized excited state toward a more polar ICT state. Even the triplet state of 9DPhen in isopentane at 77 K shows a significant polar character. As a reference compound, 9-phenylphenanthrene (9PhPhen) was also examined by means of stationary and time-resolved fluorescence measurements as well as transient absorption experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.