Exploiting the performance of today's microprocessors requires intimate knowledge of the microarchitecture as well as an awareness of the ever-growing complexity in thread and cache topology. LIKWID is a set of command line utilities that addresses four key problems: Probing the thread and cache topology of a shared-memory node, enforcing thread-core affinity on a program, measuring performance counter metrics, and microbenchmarking for reliable upper performance bounds. Moreover, it includes an mpirun wrapper allowing for portable thread-core affinity in MPI and hybrid MPI/threaded applications. To demonstrate the capabilities of the tool set we show the influence of thread affinity on performance using the well-known OpenMP STREAM triad benchmark, use hardware counter tools to study the performance of a stencil code, and finally show how to detect bandwidth problems on ccNUMA-based compute nodes.
Modern multicore chips show complex behavior with respect to performance and power. Starting with the Intel Sandy Bridge processor, it has become possible to directly measure the power dissipation of a CPU chip and correlate this data with the performance properties of the running code. Going beyond a simple bottleneck analysis, we employ the recently published Execution-Cache-Memory (ECM) model to describe the singleand multi-core performance of streaming kernels. The model refines the well-known roofline model, since it can predict the scaling and the saturation behavior of bandwidth-limited loop kernels on a multicore chip. The saturation point is especially relevant for considerations of energy consumption. From power dissipation measurements of benchmark programs with vastly different requirements to the hardware, we derive a simple, phenomenological power model for the Sandy Bridge processor. Together with the ECM model, we are able to explain many peculiarities in the performance and power behavior of multicore processors, and derive guidelines for energy-efficient execution of parallel programs. Finally, we show that the ECM and power models can be successfully used to describe the scaling and power behavior of a lattice-Boltzmann flow solver code.
Stencil algorithms on regular lattices appear in many fields of computational science, and much effort has been put into optimized implementations. Such activities are usually not guided by performance models that provide estimates of expected speedup. Understanding the performance properties and bottlenecks by performance modeling enables a clear view on promising optimization opportunities. In this work we refine the recently developed Execution-Cache-Memory (ECM) model and use it to quantify the performance bottlenecks of stencil algorithms on a contemporary Intel processor. This includes applying the model to arrive at single-core performance and scalability predictions for typical "corner case" stencil loop kernels. Guided by the ECM model we accurately quantify the significance of "layer conditions," which are required to estimate the data traffic through the memory hierarchy, and study the impact of typical optimization approaches such as spatial blocking, strength reduction, and temporal blocking for their expected benefits. We also compare the ECM model to the widely known Roofline model.
We present a performance model for bandwidth limited loop kernels which is founded on the analysis of modern cache based microarchitectures. This model allows an accurate performance prediction and evaluation for existing instruction codes. It provides an in-depth understanding of how performance for different memory hierarchy levels is made up. The performance of raw memory load, store and copy operations and a stream vector triad are analyzed and benchmarked on three modern x86-type quad-core architectures in order to demonstrate the capabilities of the model.
In the last decade, Expression Templates (ET) have gained a reputation as an efficient performance optimization tool for C++ codes. This reputation builds on several ET-based linear algebra frameworks focused on combining both elegant and high-performance C++ code. However, on closer examination the assumption that ETs are a performance optimization technique cannot be maintained. In this paper we demonstrate and explain the inability of current ET-based frameworks to deliver high performance for dense and sparse linear algebra operations, and introduce a new "smart" ET implementation that truly allows the combination of high performance code with the elegance and maintainability of a domain-specific language.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.