Recent research has shown that neurophysiological activation during action planning depends on the orientation to initial or final action goals for precision grips. However, the neural signature for a distinct class of grasping, power grips, is still unknown. The aim of the present study was to differentiate between cerebral activity, by means of event-related potentials (ERPs), and its temporal organization during power grips executed with an emphasis on either the initial or final parts of movement sequences. In a grasp and transportation task, visual cues emphasized either the grip (the immediate goal) or the target location (the final goal). ERPs differed between immediate and final goal-cued conditions, suggesting different means of operation dependent on goal-relatedness. Differences in mean amplitude occurred earlier for power grips than for recently reported precision grips time-locked to grasping over parieto-occipital areas. Time-locked to final object placement, differences occurred within a similar time window for power and precision grips over frontal areas. These results suggest that a parieto-frontal network of activation is of crucial importance for grasp planning and execution. Our results indicate that power grip preparation and execution for goal-related actions are controlled by similar neural mechanisms as have been observed during precision grips, but with a distinct temporal pattern.
This study explored the neurophysiological mechanisms underlying the planning and execution of an overt goal-related handle rotation task. More specifically, we studied the neural basis of motor actions concerning the influence of the grasp choice. The aim of the present study was to differentiate cerebral activity between grips executed in a habitual and a non-habitual mode, and between specified and free grip choices. To our knowledge, this is the first study to differentiate cerebral activity underlying overt goal-related actions executed with a focus on the habitual mode. In a handle rotation task, participants had to use thumb-toward (habitual) or thumb-away (non-habitual) grips to rotate a handle to a given target position. Reaction and reach times were shorter for the habitual compared to the non-habitual mode indicating that the habitual mode requires less cognitive processing effort than the non-habitual mode. Neural processes for action execution (measured by event-related potentials (ERPs)) differed between habitual and non-habitual conditions. We found differential activity between habitual and non-habitual conditions in left and right frontal areas from −600 to 200 ms time-locked to reaching the target position. No differential neural activity could be traced for the specification of the grip. The results suggested that the frontal negativity reflected increased difficulty in movement precision control in the non-habitual mode compared to the habitual mode during the homing in phase of grasp and rotation actions.
We use our hands very frequently to interact with our environment. Neuropsychology together with lesion models and intracranial recordings and imaging work yielded important insights into the functional neuroanatomical correlates of grasping, one important function of our hands, pointing toward a functional parietofrontal brain network. Event-related potentials (ERPs) register directly electrical brain activity and are endowed with high temporal resolution but have long been assumed to be susceptible to movement artifacts. Recent work has shown that reliable ERPs can be obtained during movement execution. Here, we review the available ERP work on (uni) manual grasping actions. We discuss various ERP components and how they may be related to functional components of grasping according to traditional distinctions of manual actions such as planning and control phases. The ERP results are largely in line with the assumption of a parietofrontal network. But other questions remain, in particular regarding the temporal succession of frontal and parietal ERP effects. With the low number of ERP studies on grasping, not all ERP effects appear to be coherent with one another. Understanding the control of our hands may help to develop further neurocognitive theories of grasping and to make progress in prosthetics, rehabilitation or development of technical systems for support of human actions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.