Games for rehabilitation are developing rapidly in recent years. It has been shown that utilization of therapy and gaming technology affects positively on the patients' physical and mental condition. However, to this day there are only few playable games for Parkinson's disease patients. This paper presents the development process of WuppDi!-a collection of five motion-based games for Parkinson's disease patients, aimed at supporting their exercises routines in various playful environments. We describe the game design challenges for Parkinson's disease patients and our solutions used in the games. Finally, we present the results of a conducted field test showing a very positive motivational effect among the majority of the patients but also highlighting remaining issues and technical difficulties, which can be beneficial for the future development in this field.
Purpose: Augmented Reality (AR) obtains increasing acceptance in the operating room. However, a meaningful augmentation of the surgical view with a 3D visualization of planning data which allows reliable comparisons of distances and spatial relations is still an open request. Methods: We introduce methods for intraoperative visualization of 3D planning models which extend illustrative rendering and AR techniques. We aim to reduce visual complexity of 3D planning models and accentuate spatial relations between relevant objects. The main contribution of our work is an advanced silhouette algorithm for 3D planning models (distance-encoding silhouettes) combined with procedural textures (distance-encoding surfaces). In addition, we present a method for illustrative visualization of resection surfaces. Results: The developed algorithms have been embedded into a clinical prototype that has been evaluated in the operating room. To verify the expressiveness of our illustration methods, we performed a user study under controlled conditions. The study revealed a clear advantage in distance assessment with the proposed illustrative approach in comparison to classical rendering techniques.
Conclusion:The presented illustration methods are beneficial for distance assessment in surgical AR. To increase the safety of interventions with the proposed approach, reduction of inaccuracies in tracking and registration are subject of our current research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.