This paper takes a first step in characterizing a novel field of architectural research - aerial robotic construction (ARC) - where aerial robotics is used not only for construction, but as a guiding principle in the design and fabrication process. Featuring autonomous flying vehicles that lift small building elements and position them according to a precise digital blueprint, ARC offers a comprehensive new approach to architecture research and technology. Developed by the research groups of Gramazio & Kohler and Raffaello D'Andrea at ETH Zurich, ARC offers unique advantages over traditional approaches to building: it does not require scaffolding, it is easily scalable, and it offers digital integration and informational oversight across the entire design and building process. This paper considers 1) research parameters for the individual components of ARC (such as module design, connection methodologies, vehicle cooperation, and construction sequencing/synchronization), and 2) the architectural implications of integrating these discrete components into a systemic, unifying process at the earliest stages of design. Fidelity between the design concept and the full-scale construction is of particular concern.
This paper takes a first step in characterizing a novel field of research-Jammed Architectural Structures-where load-bearing architectural structures are automatically aggregated from bulk material. Initiated by the group of Gramazio Kohler Research at ETH Zürich and the Self-Assembly Lab at Massachusetts Institute of Technology, this digital fabrication approach fosters a combination of cutting-edge robotic fabrication technology and low-grade building material, shifting the focus from precise assembly of known parts towards controlled aggregation of granular material such as gravel or rocks. Since the structures in this process are produced without additional formwork, are fully reversible, and are produced from local or recycled materials, this pursuit offers a radical new approach to sustainable, economical and structurally sound building construction. The resulting morphologies allow for a convergence of novel aesthetic and structural capabilities, enabling a locally differentiated aggregation of material under digital guidance, and featuring high geometrical flexibility and minimal material waste. This paper considers 1) fundamental research parameters such as design computation and fabrication methods, 2) first results of physical experimentation, and 3) the architectural implications of this research for a unified, material-driven digital design and fabrication process. Full-scale experimentation demonstrates that it is possible to erect building-sized structures that are larger than the work-envelope of the digital fabrication setup.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.