The application of a new generation of sequencing techniques has revealed that most of the genome has already been transcribed. However, only a small part of the genome codes proteins. The rest of the genome "dark matter” belongs to divergent groups of non-coding RNA (ncRNA), that is not translated into proteins. There are two groups of ncRNAs, which include small and long non-coding RNAs (sncRNA and lncRNA respectively). Over the last decade, there has been an increased interest in lncRNAs and their interaction with cellular components. In this review, we presented the newest information about the human lncRNA interactome. The term lncRNA interactome refers to cellular biomolecules, such as nucleic acids, proteins, and peptides that interact with lncRNA. The lncRNA interactome was characterized in the last decade, however, understanding what role the biomolecules associated with lncRNA play and the nature of these interactions will allow us to better understand lncRNA's biological functions in the cell. We also describe a set of methods currently used for the detection of lncRNA interactome components and the analysis of their interactions. We think that such a holistic and integrated analysis of the lncRNA interactome will help to better understand its potential role in the development of organisms and cancers.
Pseudouridine (psi) is commonly found in both small and large subunit ribosomal RNAs of prokaryotes and eukaryotes. In Escherichia coli small subunit RNA, there is only one psi, at position 516, in a region of the RNA known to be involved in codon recognition [Bakin et al. (1994) Nucleic Acids Res. 22, 3681-3684]. To assess the function of this single psi residue, the enzyme catalyzing its formation was purified and cloned. The enzyme contains 231 amino acids and has a calculated molecular mass of 25,836 Da. It converts U516 in E. coli 16S RNA transcripts into psi but does not modify any other position in this RNA. It does not react with free unmodified 16S RNA at all, and only poorly with 30S particles containing unmodified RNA. The preferred substrate is an RNA fragment from residues 1 to 678 which has been complexed with 30S ribosomal proteins. The yield varied from 0.6 to 1.0 mol of psi/mol of RNA, depending on the preparation. Free RNA(1-678) was inactive, as was RNA(1-526) and the RNP particle made from it. 23S RNA and tRNAVal transcripts were also inactive. These results suggest that psi formation in vivo occurs at an intermediate stage of 30S assembly. The gene is located at 47.1 min immediately 5' to, and oriented in the same direction as, the bicyclomycin resistance gene. The gene was cloned behind a (His)6 leader for affinity purification. Virtually all of the overexpressed protein was found in inclusion bodies but could be purified to homogeneity on a Ni2+(-) containing resin. Over 200 mg of pure protein could be obtained from a liter of cell culture. Amino acid sequence comparison revealed the existence of a gene in Bacillus subtilis with a similar sequence, and psi sequence analysis established that B. subtilis has the equivalent of psi 516 in its small subunit rRNA. On the other hand, no common sequence motifs could be detected among this enzyme and the two tRNA psi synthases which have been cloned up to now.
Pseudouridine (psi), the most common single modified nucleoside in ribosomal RNA, has been positioned in the small subunit (SSU) and large subunit (LSU) RNAs of a number of representative species. Most of the information has been obtained by application of a rapid primed reverse transcriptase sequencing technique. The locations of these psi residues have been compared. Many sites for psi are the same among species, but others are distinct. In general, the percentage psi in multicellular eukaryotes is greater than in prokaryotes. In LSU RNA, the psi residues are strongly clustered in three domains, all of which are near or connected to the peptidyl transferase center. There is no apparent clustering of psi in SSU RNA. The psi sites in LSU RNA overlap those for the methylated nucleosides, but this is not the case in SSU RNA. There are 265 psi sites known to nucleotide resolution, of which 246 are in defined secondary structures, and 112 of these are in nonidentical structural contexts. All 246 psi sites can be classified into five structural types. Two Escherichia coli psi synthases have been cloned and characterized, one for psi 516 in SSU RNA and one for psi 746 in LSU RNA. The psi 746 synthase recognizes free RNA, but the psi 516 enzyme requires an intermediate RNP particle. Possible functional roles for psi in the ribosome are discussed.
In vitro selection was performed to search for RNA-cleaving DNAzymes catalytically active with Cd(2+) ions from the oligonucleotide combinatorial library with a 23-nucleotide random region. All the selected, catalytically active variants turned out to belong to the 8-17 type DNAzyme. Three DNAzymes were prepared in shortened, cis-acting versions which were subjected to a detailed study of the kinetic properties and metal ion preferences. Although the selection protocol was designed for Cd(2+)-dependent DNAzymes, the variants showed broader metal ion specificity. They preferred Cd(2+) but were also active with Mn(2+) and Zn(2+), suggesting that binding of the catalytic ion does not require an extremely specific coordination pattern. The unexpected decrease of the catalytic activity of the variants along with the temperature increase suggested that some changes occurred in their structures or the rate-limiting step of the reaction was changed. Two elements of the catalytic core of DNAzyme 1/VIIWS, the nucleotide at position 12 and the three-base-pair hairpin motif, were mutated. The presence of a purine residue at position 12 was crucial for the catalytic activity but the changes at that position had a relatively small influence on the metal ion preferences of this variant. The middle base pair of the three-base-pair hairpin was changed from A-T to C-G interaction. The catalytic activity of the mutated variant was increased with Zn(2+), decreased with Mn(2+), and was not changed in the presence of Cd(2+) ions. Clearly, this base pair was important for defining the metal ion preferences of the DNAzyme 1/VIIWS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.