O-GlcNAc transferase (OGT) glycosylates a diverse range of intracellular proteins with O-linked N-acetylglucosamine (O-GlcNAc), an essential and dynamic post-translational modification in metazoans. Although this enzyme modifies hundreds of proteins with O-GlcNAc, it is not understood how OGT achieves substrate specificity. In this study, we describe the application of a high-throughput OGT assay to a library of peptides. We mapped sites of O-GlcNAc modification by electron transfer dissociation MS and found that they correlate with previously detected O-GlcNAc sites. Crystal structures of four acceptor peptides in complex with Homo sapiens OGT suggest that a combination of size and conformational restriction defines sequence specificity in the -3 to +2 subsites. This work reveals that although the N-terminal TPR repeats of OGT may have roles in substrate recognition, the sequence restriction imposed by the peptide-binding site makes a substantial contribution to O-GlcNAc site specificity.
Elucidation of the structure of PrPSc continues to be one major challenge in prion research. The mechanism of propagation of these infectious agents will not be understood until their structure is solved. Given that high resolution techniques such as NMR or X-ray crystallography cannot be used, a number of lower resolution analytical approaches have been attempted. Thus, limited proteolysis has been successfully used to pinpoint flexible regions within prion multimers (PrPSc). However, the presence of covalently attached sugar antennae and glycosylphosphatidylinositol (GPI) moieties makes mass spectrometry-based analysis impractical. In order to surmount these difficulties we analyzed PrPSc from transgenic mice expressing prion protein (PrP) lacking the GPI membrane anchor. Such animals produce prions that are devoid of the GPI anchor and sugar antennae, and, thereby, permit the detection and location of flexible, proteinase K (PK) susceptible regions by Western blot and mass spectrometry-based analysis. GPI-less PrPSc samples were digested with PK. PK-resistant peptides were identified, and found to correspond to molecules cleaved at positions 81, 85, 89, 116, 118, 133, 134, 141, 152, 153, 162, 169 and 179. The first 10 peptides (to position 153), match very well with PK cleavage sites we previously identified in wild type PrPSc. These results reinforce the hypothesis that the structure of PrPSc consists of a series of highly PK-resistant β-sheet strands connected by short flexible PK-sensitive loops and turns. A sizeable C-terminal stretch of PrPSc is highly resistant to PK and therefore perhaps also contains β-sheet secondary structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.