A two-terminal bistable device, having both ON and OFF regimes, has been demonstrated with Ge nanowires using an in situ TEM-STM technique. The function of the device is based on delicately balancing electrostatic, elastic, and adhesion forces between the nanowires and the contacts, which can be controlled by the applied voltage. The operation and failure conditions of the bistable device were investigated, i.e. the influence of nanowire diameter, the surface oxide layer on the nanowires and the current density. During ON/OFF cycles the Ge nanowires were observed to be more stable than carbon nanotubes, working at similar conditions, due to the higher mechanical stability of the nanowires. The higher resistivity of Ge nanowires, compared to carbon nanotubes, provides potential application of these 1D nanostructures in high-voltage devices.
We present a simple two-stage vapour-solid synthesis method for the growth of bismuth chalcogenide (Bi2Te3, Bi2Se3) topological insulator nanowires/nanobelts by using Bi2Se3 or Bi2Te3 powders as source materials. During the first stage of the synthesis process nanoplateteles, serving as "catalysts" for further nanowire/nanobelt growth, are formed. At a second stage of the synthesis, the introduction of a N2 flow at 35 Torr pressure in the chamber induces the formation of free standing nanowires/nanobelts. The synthesised nanostructures demonstrate a layered single-crystalline structure and Bi : Se and Bi : Te ratios 40 : 60 at% for both Bi2Se3 and Bi2Te3 nanowires/nanobelts. The presence of Shubnikov de Haas oscillations in the longitudinal magneto-resistance of the nanowires/nanobelts and their specific angular dependence confirms the existence of 2D topological surface states in the synthesised nanostructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.