A total of 188 human (n592) and animal (n596) isolates of Clostridium difficile of different PCR ribotypes were screened for susceptibility to 30 antimicrobials using broth microdilution. When comparing the prevalence of antimicrobial resistance, the isolates of animal origin were significantly more often resistant to oxacillin, gentamicin and trimethoprim/sulfamethoxazole (P,0.01). The most significant difference between the animal and human populations (P50.0006) was found in the level of imipenem resistance, with a prevalence of 53.3 % in isolates of human origin and 28.1 % in isolates of animal origin. Overall, the results show similar MICs for the majority of tested antimicrobials for isolates from human and animal sources, which were collected from the same geographical region and in the same time interval. This supports the hypothesis that C. difficile could be transmissible between human and animal hosts. Resistant isolates have been found in all animal species tested, including food and companion animals, and also among non-toxigenic isolates. The isolates of the most prevalent PCR ribotype 014/020 had low resistance rates for moxifloxacin, erythromycin, rifampicin and daptomycin, but a high resistance rate for imipenem. Multiresistant strains were found in animals and humans, belonging to PCR ribotypes 012, 017, 027, 045, 046, 078 and 150, and also to non-toxigenic strains of PCR ribotypes 010 and SLO 080.
The emergence of antimicrobial-resistant and virulent enterococci is a major public health concern. While enterococci are commonly found in food of animal origin, the knowledge on their zoonotic potential is limited. The aim of this study was to determine and compare the antimicrobial susceptibility and virulence traits of Enterococcus faecalis and Enterococcus faecium isolates from human clinical specimens and retail red meat in Slovenia. A total of 242 isolates were investigated: 101 from humans (71 E. faecalis, 30 E. faecium) and 141 from fresh beef and pork (120 E. faecalis, 21 E. faecium). The susceptibility to 12 antimicrobials was tested using a broth microdilution method, and the presence of seven common virulence genes was investigated using PCR. In both species, the distribution of several resistance phenotypes and virulence genes was disparate for isolates of different origin. All isolates were susceptible to daptomycin, linezolid, teicoplanin, and vancomycin. In both species, the susceptibility to antimicrobials was strongly associated with a food origin and the multidrug resistance, observed in 29.6% of E. faecalis and 73.3% E. faecium clinical isolates, with a clinical origin (Fisher’s exact test). Among meat isolates, in total 66.0% of E. faecalis and E. faecium isolates were susceptible to all antimicrobials tested and 32.6% were resistant to either one or two antimicrobials. In E. faecalis, several virulence genes were significantly associated with a clinical origin; the most common (31.0%) gene pattern included all the tested genes except hyl. In meat isolates, the virulence genes were detected in E. faecalis only and the most common pattern included ace, efaA, and gelE (32.5%), of which gelE showed a statistically significant association with a clinical origin. These results emphasize the importance of E. faecalis in red meat as a reservoir of virulence genes involved in its persistence and human infections with reported severe outcomes.
BackgroundIn humans, transmission of bacteria causing fatal sepsis in the neonates through mother’s milk has been reported. In dogs, it is believed that bacteria from canine milk are not the primary cause of neonatal infections. Staphylococcus pseudintermedius is colonizing the skin and mucocutaneous junctions in adult dogs and can act as an opportunistic pathogen. This bacterium was previously isolated from the canine milk and, although, its transmission from the dam’s milk to the newborn puppies causing a neonatal sepsis was suggested, this hypothesis has not been confirmed.Case presentationA 4.5-year-old healthy Boston terrier dam had an elective cesarean section, delivering five normal puppies and one dead runt. Next day, two puppies developed pustules on their legs and around the muzzle. After two more days, strings of blood were noticed in the stool of the biggest puppy that suddenly died later that night. The same day, blood became visible in the feces of all other puppies. Necropsy of the dead puppy revealed a distended abdomen, catarrhal gastroenteritis with lymphadenopathy, dark red and slightly firm lung, mild dilatation of the right heart chamber and congestion of the liver, spleen, pancreas and meninges. The thoracic cavity contained white-yellow slightly opaque exudate, and there was transudate in the abdominal cavity. Histopathology revealed an acute interstitial pneumonia and multifocal myocardial necrosis with mineralization. Bacteriology of the internal organs, body cavity effusions of the dead puppy and dam’s milk revealed a diffuse growth of S. pseudintermedius in pure culture. Whole genome sequencing (WGS) revealed that all isolates belonged to the sequence type 241 and differed in 2–5 single nucleotide polymorphisms; thus, the epidemiological link between the outbreak-associated isolates was confirmed.ConclusionsThis is the first report of a confirmed transmission of S. pseudintermedius through dam’s milk causing a neonatal sepsis in a puppy after an elective cesarean section. The epidemiological link between S. pseudintermedius isolates obtained from dam’s milk and internal organs of the affected puppy was confirmed by WGS. Our findings indicate that milk of healthy dams can serve as a reservoir of bacteria that can cause fatal sepsis in the newborn puppies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.