The dimorphism of the yeast Arxula adeninivorans LS3 is regulated by cultivation temperatures. Up to 42 degrees C the yeast grows as budding cells, which turn to mycelia at higher temperatures. To test whether the dimorphism is exclusively induced by high temperatures or also by other conditions, mutants were selected with an altered behaviour with respect to dimorphism. After mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine, five of 25,000 colonies formed a very rough surface consisting of mycelia at 30 degrees C, in contrast to the wild-type. These mutants allow temperature-mediated and morphology-related effects on gene expression and protein accumulation to be distinguished. Budding cells and mycelia showed different expression of genes encoding secretory proteins at the same temperature. Mycelia secreted two-fold more protein than budding cells, including the enzymes glucoamylase and invertase. This indicated that morphology, rather than temperature, is the decisive factor in the analysed processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.