There is limited information on intra-annual plasticity of secondary tissues of tree species growing under different environmental conditions. To increase the knowledge about the plasticity of secondary growth, which allows trees to adapt to specific local climatic regimes, we examined climate–radial growth relationships of Norway spruce [Picea abies (L.) H. Karst.] from three contrasting locations in the temperate climatic zone by analyzing tree-ring widths for the period 1932–2010, and cell characteristics in xylem and phloem increments formed in the years 2009–2011. Variation in the structure of xylem and phloem increments clearly shows that plasticity in seasonal dynamics of cambial cell production and cell differentiation exists on xylem and phloem sides. Anatomical characteristics of xylem and phloem cells are predominantly site-specific characteristics, because they varied among sites but were fairly uniform among years in trees from the same site. Xylem and phloem tissues formed in the first part of the growing season seemed to be more stable in structure, indicating their priority over latewood and late phloem for tree performance. Long-term climate and radial growth analyses revealed that growth was in general less dependent on precipitation than on temperature; however, growth sensitivity to local conditions differed among the sites. Only partial dependence of radial growth of spruce on climatic factors on the selected sites confirms its strategy to adapt the structure of wood and phloem increments to function optimally in local conditions.
Climate change increases the earliness and effect of spring dry spells. The efforts to reduce their negative effects on tree regeneration include improvement in physical properties of soil aimed at an increase in water retention and availability. Clinoptilolite from the group of zeolites belongs among such water-absorbent natural materials. The article aims to assess the effect of clinoptilolite admixture in a growing medium, along with different fertilizer concentration, on the growth of pine and birch seedlings and their development during simulated drought. A common (reference) growing medium was tested along with 4 treatments of the growing medium with clinoptilolite. The birch responded to the fertilizer concentration more intensively than to the clinoptilolite admixture and was more vulnerable to drought damage due to a closer dependence of physiological responses on a decrease in the growing medium moisture. The onset of pine withering was slowest in the reference growing medium. A positive effect of clinoptilolite addition on the growth of pine seedlings was confirmed but its unambiguously positive effect on overcoming of spring dry spells was not demonstrated. Clinoptilolite addition with higher fertilizer rate was found as fully unsuitable.
This study aimed to determine the influence of the stand age and selected weather conditions on the cambial activity, xylem and phloem formation and their development. For the analysis, microcores were taken weekly from two corresponding stands of Norway spruce (Picea abies (L.) Karst.) with various ages (35-and 106-years-old) during the growing season 2012 in the Czech Republic. Young specimens were characterised by higher cambium activity; however, more considerable variation and imbalance were found there. In old trees, delayed processes during the development of the xylem and phloem at the cell level were proved. The cambium activity started in March till mid-April, and it lasted for 22 weeks in both cases. The commencement of xylogenesis was established in the first half of May. In both investigated stands, the fully lignified ring was observed at the end of October. For the creation of most xylem cells, it was required 124 and 121 days in the young and old stands, respectively. Daily increment of 0.57 (young) and 0.49 (old) cells on average was observed during the active xylem growth. The relationship between air temperature and wood cell formation for both age groups was recorded. The precipitation influenced wood development just in the case of the young trees. Phloem formation was resistant to external influence according to the Pearson correlation coefficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.