We introduce a novel computational approach, CoReCo, for comparative metabolic reconstruction and provide genome-scale metabolic network models for 49 important fungal species. Leveraging on the exponential growth in sequenced genome availability, our method reconstructs genome-scale gapless metabolic networks simultaneously for a large number of species by integrating sequence data in a probabilistic framework. High reconstruction accuracy is demonstrated by comparisons to the well-curated Saccharomyces cerevisiae consensus model and large-scale knock-out experiments. Our comparative approach is particularly useful in scenarios where the quality of available sequence data is lacking, and when reconstructing evolutionary distant species. Moreover, the reconstructed networks are fully carbon mapped, allowing their use in 13C flux analysis. We demonstrate the functionality and usability of the reconstructed fungal models with computational steady-state biomass production experiment, as these fungi include some of the most important production organisms in industrial biotechnology. In contrast to many existing reconstruction techniques, only minimal manual effort is required before the reconstructed models are usable in flux balance experiments. CoReCo is available at http://esaskar.github.io/CoReCo/.
Abstract. In retrieval, indexing and classification of multimedia data an efficient information fusion of the different modalities is essential for the system's overall performance. Since information fusion, its influence factors and performance improvement boundaries have been lively discussed in the last years in different research communities, we will review their latest findings. They most importantly point out that exploiting the feature's and modality's dependencies will yield to maximal performance. In data analysis and fusion tests with annotated image collections this is undermined.
The Wikipedia image retrieval task at ImageCLEF provides a test-bed for the system-oriented evaluation of visual information retrieval from a collection of Wikipedia images. The aim is to investigate the effectiveness of retrieval approaches that exploit textual and visual evidence in the context of a large and heterogeneous collection of images that are searched for by users with diverse information needs. This chapter presents an overview of the available test collections, summarises the retrieval approaches employed by the groups that participated in the task during the 2008 and 2009 ImageCLEF campaigns, provides an analysis of the main evaluation results, identifies best practices for effective retrieval, and discusses open issues.
The wikipediaMM task provides a testbed for the systemoriented evaluation of ad-hoc retrieval from a large collection of Wikipedia images. It became a part of the ImageCLEF evaluation campaign in 2008 with the aim of investigating the use of visual and textual sources in combination for improving the retrieval performance. This paper presents an overview of the task's resources, topics, assessments, participants' approaches, and main results.
Multiple interacting factors affect the performance of engineered biological systems in synthetic biology projects. The complexity of these biological systems means that experimental design should often be treated as a multiparametric optimization problem. However, the available methodologies are either impractical, due to a combinatorial explosion in the number of experiments to be performed, or are inaccessible to most experimentalists due to the lack of publicly available, user-friendly software. Although evolutionary algorithms may be employed as alternative approaches to optimize experimental design, the lack of simple-to-use software again restricts their use to specialist practitioners. In addition, the lack of subsidiary approaches to further investigate critical factors and their interactions prevents the full analysis and exploitation of the biotechnological system. We have addressed these problems and, here, provide a simple‐to‐use and freely available graphical user interface to empower a broad range of experimental biologists to employ complex evolutionary algorithms to optimize their experimental designs. Our approach exploits a Genetic Algorithm to discover the subspace containing the optimal combination of parameters, and Symbolic Regression to construct a model to evaluate the sensitivity of the experiment to each parameter under investigation. We demonstrate the utility of this method using an example in which the culture conditions for the microbial production of a bioactive human protein are optimized. CamOptimus is available through: (https://doi.org/10.17863/CAM.10257).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.