Sádecká J., Tóthová J. (2007): Fluorescence spectroscopy and chemometrics in the food classification − a review. Czech J. Food Sci., 25: 159-173.This review deals with the last few years' articles on various fluorescence techniques (conventional, excitation-emission matrix, and synchronous fluorescence spectroscopy) as a tool for the classification of food samples. Chemometric methods as principal component analysis, hierarchical cluster analysis, parallel factor analysis, and factorial discriminate analysis are briefly reminded. The respective publications are then listed according to the food samples: dairy products, eggs, meat, fish, edible oils, and others.
Food irradiation is a process of exposing food to ionising radiation such as gamma rays emitted from the radioisotopes 60 Co and 137 Cs, or high energy electrons and X-rays produced by machine sources. The use of ionising radiation to destroy harmful biological organisms in food is considered a safe, well proven process that has found many applications. Depending on the absorbed dose of radiation, various effects can be achieved resulting in reduced storage losses, extended shelf life and/or improved microbiological and parasitological safety of foods. The most common irradiated commercial products are spices and vegetable seasonings. Spice irradiation is increasingly recognised as a method that reduces post-harvest losses, ensures hygienic quality, and facilitates trade with food products. This article reviews recent activities concerning food irradiation, focusing on the irradiation of spices and dried vegetable seasonings from the food safety aspect.
Selective SPE of derivates of p-hydroxybenzoic acid (pHBA) from plant extract of Melissa officinalis is presented using a molecularly imprinted polymer (MIP) made with protocatechuic acid (PA) as template molecule. MIP was prepared with acrylamide as functional monomer, ethylene glycol dimethacrylate as crosslinking monomer and ACN as porogen. MIP was evaluated towards six phenolic acids: PA, gallic acid, pHBA, vanillic acid (VA), gentisic acid (GeA) and syringic acid (SyrA), and then steps of molecularly imprinted SPE (MISPE) procedure were optimized. The best specific binding capacity of MIP was obtained for PA in ACN (34.7 microg/g of MIP). Other tested acids were also bound on MIP if they were dissolved in this solvent. ACN was chosen as solvent for sample application. M. officinalis was extracted into methanol/water (4:1, v/v), the extract was then evaporated to dryness and dissolved in ACN before application on MIP. Water and ACN were used as washing solvents and elution of benzoic acids was performed by means of a mixture methanol/acetic acid (9:1, v/v). pHBA, GA, PA and VA were extracted with recoveries of 56.3-82.1% using this MISPE method. GeA was not determined in plant extract.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.