On expose une théorie quantitative de la sélectivité ionique des membranes.
Developing tissue is typically soft, highly hydrated, dynamic, and increasingly heterogeneous matter. Recapitulating such characteristics in engineered cell‐instructive materials holds the promise of maximizing the options to direct tissue formation. Accordingly, progress in the design of multiphasic hydrogel materials is expected to expand the therapeutic capabilities of tissue engineering approaches and the relevance of human 3D in vitro tissue and disease models. Recently pioneered methodologies allow for the creation of multiphasic hydrogel systems suitable to template and guide the dynamic formation of tissue‐ and organ‐specific structures across scales, in vitro and in vivo. The related approaches include the assembly of distinct gel phases, the embedding of gels in other gel materials and the patterning of preformed gel materials. Herein, the capabilities and limitations of the respective methods are summarized and discussed and their potential is highlighted with some selected examples of the recent literature. As the modularity of the related methodologies facilitates combinatorial and individualized solutions, it is envisioned that multiphasic gel‐in‐gel materials will become a versatile morphogenetic toolbox expanding the scope and the power of bioengineering technologies.
Bone is the most common site for breast-cancer invasion and metastasis, and it causes severe morbidity and mortality. A greater understanding of the mechanisms leading to bone-specific metastasis could improve therapeutic strategies and thus improve patient survival. While three-dimensional in vitro culture models provide valuable tools to investigate distinct heterocellular and environmental interactions, sophisticated organ-specific metastasis models are lacking. Previous models used to investigate breast-to-bone metastasis have relied on 2.5D or singular-scaffold methods, constraining the in situ mimicry of in vitro models. Glycosaminoglycan-based gels have demonstrated outstanding potential for tumor-engineering applications. Here, we developed advanced biphasic in vitro microenvironments that mimic breast-tumor tissue (MCF-7 and MDA-MB-231 in a hydrogel) spatially separated with a mineralized bone construct (human primary osteoblasts in a cryogel). These models allow distinct advantages over former models due to the ability to observe and manipulate cellular migration towards a bone construct. The gels allow for the binding of adhesion-mediating peptides and controlled release of signaling molecules. Moreover, mechanical and architectural properties can be tuned to manipulate cell function. These results demonstrate the utility of these biomimetic microenvironment models to investigate heterotypic cell–cell and cell–matrix communications in cancer migration to bone.
665 -89. La permbabilite des membranes. XI. Essais avee des membranes selectives artificielles par Kurt H. Meyer e t J.-F. Sievers. (4. V. 36.)Dam le memoire precedent nous avons expos4 la theorie des phenomhnes de la permBabilit4 selective ionique. Xous indiquerons maintenant les rksultats obtenus B I'aide de membranes artificielles. I. Les membranes utilise'es pozw nos essais.Nous avons utilisk des produits dont quelques-uns se trouvaient dkja sous forme de minces feuilles comme la cccellophane))l), tandis que d'autres ont ktP; prkparbs B partir des solutions. Pour la nitrocellulose, nous nous sommes servis d'une solution de 4% cle collodion dans 1'6ther-alcool (8cherinq-&hZbaum), tandis que l'ac6tylcellulose (Cellit L 1000 I . G . Harbeninndustrie) a kt6 employhe en solution a 5 % dans l'acetone ou dans l'acide acktique glacial. Le ehoix de I'un ou l'autre de ces deux solvants .etait diet6 par la solubilite des substances acides ou basiques h, rncorporer dam le cellit.Au debut de nos essais, nous avons prhpark des membranes, ayant la forme d'une Bprouvette. A cet effet, nous avons laisse 6vaporer une certaine quantitd de solution dsns un tube a essais d'un diamktre d'environ 26 mm et tournant horizontalement autour de son axe. Plus tard, les solutions furent versdes sur une glace horizontale, ce qui, par haporation, permettait cle produire des membranes en forme de films.La preparation de membranes B mailles larges s'effectue en interrompant 1'6vaporation de la solution par traitement a l'eau.Le moment de coagulation convenable est d'autant plus difficile & determiner que le solvant s'evvapore plus vite; c'est pour cette raison que l'on utilise ici avantageusement des solutions dans l'acide acetique. I1 faut que la membrane contienne encore suffisamment de solvant pour rester gonflee apres la coagulation, et que d'autre part, sa structure soit assez serree pour conserver la forme requise. En detachant soigneusement les bords, il est facile de decoller la membrane de la glace resp. du tube & essais. Les membranes ti mailles larges doivent naturellernent Qtre debarassees par un lavage prolonge des quantites considerables de solvant qu'elles contiennent. Leurs proprietes sont d'ailleurs tres semblables aux ultrafiltres bien connus, c'est-&-dire qu'elles se trouvent dans un certain etat de gonflement et gardent leur structure aussi longtemps qu'elles sont conservees dans un certain Btat d'humidite. Si l'on les laisse sbcher, elles se rbtrecissent, perdent completement leur porosite, et ne peuvent plus Qtre ramenees a l'etat primitif par traitement ulterieur & l'eau. 1) Comme pellicule de cellulose (viscose) nous avons utilise la (( cellophane I), produit de la maison a La Cellophane o.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.