The effect of nitrites in foods and
beverages still raises discussion
due to the possible formation of harmful nitroso compounds. However,
as most of these compounds in beer were not structurally characterized
yet, the research about their toxicological relevance for consumers
is limited. This study is focused on identification of the products
formed by nitrite (or isotopically labeled nitrite 15N)
reactions in beer using gas chromatography with tandem mass spectrometry.
In total, 19 products were identified, and some of them were structurally
characterized and confirmed by comparing retention indices and mass
spectra of standard/synthesized compounds. Identified compounds were
representatives of nitroso, nitro, oxime, and even cyano compounds.
For the peaks which were not structurally identified, primary structural
characteristics were also listed. Found products were further screened
in 16 authentic beer samples which showed the apparent occurrence
of found compounds in non-treated beers.
Fused-silica capillary columns for high-performance liquid chromatography with 320 and 250 μm inner diameter were prepared by slurry packing with 5 and 3 μm Nucleosil C18 stationary phase. Different types of mechanical and monolithic outlet frits were used and their influence on the resulting column performance was evaluated. Columns with quartz wool exhibited symmetrical peaks and low theoretical plate height, and the preparation time was short. The performance of monolithic frits varied based on type of monolith, length of the frit, and silanization procedure. The best frit performed similarly to the quartz wool ones, but the preparation took several hours. Their main advantage lies in the possibility of on-column detection, because the detection window can be burnt immediately behind the frit.
Polymeric macromolecules of well-designed structures and specific properties open promising directions in the capillary entangled polymer electrophoresis. Pluronic F-127, as a thermoassociating polymer, possesses some unique properties that can be utilized in capillary entangled polymer electrophoresis of amino acids, peptides and proteins. In this study, we studied properties of Pluronic F-127 polymer as an additive to BGE for the separation of peptides and proteins. The influence of the thermoassociation on separation selectivity was studied. The addition of Pluronic caused severe instabilities of the electrical current and the signal of the UV detector. This study reveals remarkable positive effect of a low pressure applied to the inlet buffer vial during the analysis, which apparently stabilizes the electrical current and the detector signal. The effect of hydrodynamic flow induced by the pressure applied on the separation efficiency was studied and the significance of this effect was discussed. Pluronic F-127, as a representative of synthetic macromolecules, was compared with dextran, as a representative of natural polymers, in terms of separation power, selectivity and repeatability of migration times.
Fused silica capillary columns of the internal diameter of 320 μm were packed with the Nucleosil C18 stationary phase of 5 μm using the slurry packing method. The time of the bed compaction phase, packing pressure, and the use of ultrasound varied to study their influence on the column performance. Van Deemter curves were measured and separation impedance values were calculated in order to assess both separation efficiency and kinetic performance of the columns. Selected columns were tested again after nine months to evaluate the stability of their beds. Separation efficiencies of all columns were similar, but a major difference, caused by the use of ultrasound, was observed in the bed stability. Columns sonicated for 25 minutes during the bed compaction phase exhibited unchanged performance in the course of several months, while the performance of non-sonicated columns decreased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.