In dairy industry, quality of produced milk must be more important than quantity without a high somatic cells count (SCC) or pathogens causing mastitis of dairy cows and consumer diseases. Preserving the good health of dairy cows is a daily challenge for all involved in primary milk production. Despite the increasing level of technological support and veterinary measures, inflammation of the mammary gland–mastitis, is still one of the main health problems and reasons for economic losses faced by cow farmers. The mammary gland of high-yielding dairy cows requires making the right decisions and enforcing the proper measures aimed at minimizing external and internal factors that increase the risk of intramammary infection. Due to the polyfactorial nature of mastitis related to its reduction, the effectiveness of commonly used antimastitis methods tends to be limited and therefore it is necessary to find the areas of risk in udder health programs and monitoring systems. Only by implementing of complete udder health programs should be accompanied by research efforts to further development these complete udder health control. The present review analyses the current knowledge dealing with damping and prevention of mastitis include SCC control, proper nutrition, housing and management, milking and drying as practiced in dairy farming conditions. This information may help to improve the health of the mammary gland and the welfare of the dairy cows as well as the production of safe milk for consumers.
This study investigated 960 Slovak and Czech spotted cattle from four different conventional (non-organic) dairy herds located in Eastern Slovakia and Czechia during early lactation (14–100 days after calving). Dairy cows were examined clinically; milk from fore-stripping of each udder quarter was subjected to sensory examination and assessed by the California mastitis test (CMT), and laboratory analyses of bacterial pathogens in milk, including virulence factors, were conducted. Positive CMT scores (1–3) for one or more quarters were detected in 271 (28.2%) of the examined animals. Out of 230 infected milk samples, representing 24.0% of all dairy cows, staphylococci (59.1% of positive findings) were the most commonly isolated organisms, followed by E. coli (11.3%), streptococci Str. uberis (9.1%) and Str. agalactiae (3.4%), and enterococci (6.1%). From 136 isolates of S. aureus (38 isolates) and non-aureus staphylococci (NAS; 98 isolates), virulence factors and their resistance to 14 antimicrobials were detected using the disk diffusion method, with PCR detection of the methicillin resistance gene, mecA. An increased incidence of clinical and chronic forms of mastitis has been reported in mastitic cows in which staphylococci, especially S. aureus and NAS (S. chromogenes, S. warneri, and S. xylosus), have been detected and compared to other isolated udder pathogens. From those species, S. aureus and isolates of NAS mentioned above showed multiple virulence factors that are more likely to hydrolyze DNA, hemolysis, produce gelatinase and biofilm, and have multi-drug resistance as compared to other less virulent staphylococci. Generally, the isolated staphylococci showed 77.2% resistance to one or more antimicrobials, in particular to aminoglycosides, β-lactams, macrolides, or cephalosporins. Isolates that showed the ability to form a biofilm were more resistant to more than one antimicrobial than isolates without biofilm production. Multi-drug resistance to three or more antimicrobial classes was recorded in 16 isolates (11.7%), and the presence of the mecA gene was also confirmed in two isolates of S. aureus and two species of NAS.
Consumption of sheep’s and goat’s milk and cheese is currently increasing. The production process of these types of cheese is being carried out by traditional domestic production at farm level. However, knowledge in the field of hygiene, technology and health safety of cheeses are still insufficient. This study aimed to examine the physical and chemical quality and microbiological safety of sheep’s and goat’s milk and cheeses made from them. The month of milking influenced the content of milk components (p < 0.001) in sheep’s milk and goat’s milk, but no changes in SCC content during the examined period were found (p > 0.05). Level of contamination by Enterobacteriaceae sp. and coagulase-positive staphylococci was lower than 5 log CFU/mL in sheep’s and goat’s milk. During the ripening time, the number of lactic acid bacteria significantly raised (p < 0.001). Ripening time statistically changed (p < 0.001) not just the microbial safety of cheeses but also the color (p < 0.01). Under the applicable regulations, the analyzed samples were evaluated as suitable for human consumption.
This study aimed to calculate the proportion of antibiotic resistance profiles of Enterococcus faecium, E. faecalis, and E. durans isolated from traditional sheep and goat cheeses obtained from a selected border area of Slovakia with Hungary (region Slanské vrchy). A total of 110 Enterococcus sp. were isolated from cheese samples, of which 52 strains (E. faecium (12), E. faecalis (28), E. durans (12)) were represented. After isolation and identification by polymerase chain reaction and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry, the enterococci (E. faecium, E. faecalis, and E. durans) were submitted to susceptibility tests against nine antimicrobial agents. In general, strains of E. faecalis were more resistant than E. durans and E. faecium. A high percentage of resistance was noted in E. faecalis to rifampicin (100%), vancomycin (85.7%), teicoplanin (71.4%), erythromycin (71.4%), minocycline (57.1%), nitrofurantoin (57.1%), ciprofloxacin (14.3%), and levofloxacin (14.3%). E. durans showed resistance to rifampicin (100%), teicoplanin (100%), vancomycin (66.7%), erythromycin (66.7%), nitrofurantoin (66.7%), and minocycline (33.3%), and E. faecium showed resistance to vancomycin, teicoplanin, and erythromycin (100%). Multidrug-resistant strains were confirmed in 80% of the 52 strains in this study. Continuous identification of Enterococcus sp. and monitoring of their incidence and emerging antibiotic resistance is important in order to prevent a potential risk to public health caused by the contamination of milk and other dairy products, such as cheeses, made on farm level.
The aim of this study was to determine susceptibility of species-identified coagulase-negative staphylococci (CoNS) isolated from the thigh muscles of hunted wild pheasants (Phasianus colchicus) to seven antibiotics (penicillin, tetracycline, erythromycin, ampicillin, oxacillin, gentamicin, and vancomycin) with the help of agar dilution method. Genus confirmation of each isolate was based on the analysis of PCR product obtained from DNA target 16S ribosomal DNA. Species-identification of staphylococci was performed by means of matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) based on bacterial protein profiling. From the results of this study it follows that 41 strains of CoNS were isolated from the meat of wild pheasants. The following species of staphylococci were identified by MALDI-TOF MS: S. epidermidis (17 strains), S. warneri (8 strains), S. haemolyticus (5 strains), S. hominis (4 strains), S. xylosus (3 strains), S. vitulinus (2 strains), S. pasteuri (1 strain) and S. arlettae (1 strain). Based on results of the agar dilution method, resistance to penicillin was detected most frequently (96.2%). On the contrary, 100% susceptibility to vancomycin was observed among isolates of CoNS. Moreover, each out of 41 isolates showed simultaneous resistance to at least two antibiotics tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.