[structure: see text] The total synthesis of (+)-crocacin D is described. The convergent asymmetric synthesis relies on the use of a Stille cross-coupling between an (E)-vinyl stannane with an (E)-vinyl iodide to establish the (E,E)-dienamide moiety followed by a mild and efficient copper-catalyzed coupling between (+)-crocacin C and a (Z)-vinyl iodide to establish the challenging (Z)-enamide function.
Interesting insight into the electronic molecular structure changes associated with substituent effects on the Fermi contact (FC) and paramagnetic spin-orbit (PSO) terms of (1)J(CF) NMR coupling constants (SSCCs) in o-X-, m-X-, and p-X-fluorobenzenes (X = NH(2); NO(2)) is presented. The formulation of this approach is based on the influence of different conjugative and hyperconjugative interactions on a second-order property, which can be qualitatively predicted if it is known how they affect the main virtual excitations entering into that second-order property. A set of consistent approximations are introduced in order to analyze the behavior of occupied and virtual orbitals, which define some experimental trends for (1)J(CF) spin-spin coupling constants. In addition, DFT hybrid functionals were used, and a similar degree of confidence to compute the (1)J(CF) with those observed for the SOPPA(CCSD) method was obtained. The (1)J(CF) SSCCs for ezetimibe, a commercially fluorinated drug used to reduce cholesterol levels, were measured and DFT-calculated, and the qualitative approach quoted above was applied. As a byproduct, a possible method to determine experimentally a significant PSO contribution to (1)J(CF) SSCCs is discussed.
Conformational preferences for 2-substituted methylenecyclohexanes were determined using (3) J H 2 H 3 spin-spin coupling constants, while stereoelectronic interactions were obtained by means of theoretical calculations and NBO analysis. The conformational equilibrium of compounds studied can be represented by their axial and equatorial conformers, the axial conformers being the most stable form in polar and nonpolar solvents. These conformational preferences were attributed to the hyperconjugative interactions between the pi C-C-->sigma* C-Xax. and sigma C-H-->sigma* C-Xax. orbitals, and the repulsive steric interaction observed between sigma C-H-->n Xeq..
Theoretical and experimental 2JHH coupling constants for six-membered rings containing oxygen or sulfur atoms were studied to investigate whether the 2JHH coupling constant can be used for stereoelectronic studies in heterocyclohexanes, instead of 1JCH, because it is well known that experimental measurements of 2JHH coupling constants at low temperature are much easier to determine than the corresponding 1JCH couplings. For all compounds studied here, the 2JHH coupling constants are affected by sigma*C-H antibonding occupancy together with bond angle effects. For cyclohexane and oxygen-containing compounds, the influence on the geminal coupling for Hax-C2-Heq and for X1-C2-X3 (X=O and C), bond angles are more pronounced than for the sulfur derivatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.