We develop high performance multilingual Abstract Meaning Representation (AMR) systems by projecting English AMR annotations to other languages with weak supervision. We achieve this goal by bootstrapping transformerbased multilingual word embeddings, in particular those from cross-lingual RoBERTa (XLM-R large). We develop a novel technique for foreign-text-to-English AMR alignment, using the contextual word alignment between English and foreign language tokens. This word alignment is weakly supervised and relies on the contextualized XLM-R word embeddings. We achieve a highly competitive performance that surpasses the best published results for German, Italian, Spanish and Chinese.
We develop a framework for the general interpretation of the stochastic dynamical system near a limit cycle. Such quasiperiodic dynamics are commonly found in a variety of nonequilibrium systems, including the spontaneous oscillations of hair cells of the inner ear. We demonstrate quite generally that in the presence of noise, the phase of the limit cycle oscillator will diffuse, while deviations in the directions locally orthogonal to that limit cycle will display the Lorentzian power spectrum of a damped oscillator. We identify two mechanisms by which these stochastic dynamics can acquire a complex frequency dependence and discuss the deformation of the mean limit cycle as a function of temperature. The theoretical ideas are applied to data obtained from spontaneously oscillating hair cells of the amphibian sacculus.
Objective: Brain-Computer Interfaces (BCI) may help patients with faltering communication abilities due to neurodegenerative diseases produce text or speech by direct neural processing. However, their practical realization has proven difficult due to limitations in speed, accuracy, and generalizability of existing interfaces. The goal of this study is to evaluate the BCI performance of a robust speech decoding system that translates neural signals evoked by speech to a textual output. While previous studies have approached this problem by using neural signals to choose from a limited set of possible words, we employ a more general model that can type any word from a large corpus of English text. Approach: In this study, we create an end-to-end BCI that translates neural signals associated with overt speech into text output. Our decoding system first isolates frequency bands in the input depth-electrode signal encapsulating differential information regarding production of various phonemic classes. These bands form a feature set that then feeds into a Long Short-Term Memory (LSTM) model which discerns at each time point probability distributions across all phonemes uttered by a subject. Finally, a particle filtering algorithm temporally smooths these probabilities by incorporating prior knowledge of the English language to output text corresponding to the decoded word. The generalizability of our decoder is driven by the lack of a vocabulary constraint on this output word. Main result: This method was evaluated using a dataset of 6 neurosurgical patients implanted with intra-cranial depth electrodes to identify seizure foci for potential surgical treatment of epilepsy. We averaged 32% word accuracy and on the phoneme-level obtained 46% precision, 51% recall and 73.32% average phoneme error rate while also achieving significant increases in speed when compared to several other BCI approaches. Significance: Our study employs a more general neural signal-to-text model which could facilitate communication by patients in everyday environments.
We develop high performance multilingual Abstract Meaning Representation (AMR) systems by projecting English AMR annotations to other languages with weak supervision. We achieve this goal by bootstrapping transformerbased multilingual word embeddings, in particular those from cross-lingual RoBERTa (XLM-R large). We develop a novel technique for foreign-text-to-English AMR alignment, using the contextual word alignment between English and foreign language tokens. This word alignment is weakly supervised and relies on the contextualized XLM-R word embeddings. We achieve a highly competitive performance that surpasses the best published results for German, Italian, Spanish and Chinese.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.