BackgroundA key goal of malaria control is to achieve universal access to, and use of, long-lasting insecticidal nets (LLINs) among people at risk for malaria. Quantifying the number of LLINs needed to achieve and maintain universal coverage requires knowing when nets need replacement. Longitudinal studies have observed physical deterioration in LLINs well before the assumed net lifespan of 3 years. The objective of this study was to describe attrition, physical integrity and insecticide persistence of LLINs over time to assist with better quantification of nets needing replacement.Methods999 LLINs distributed in 2011 in two highly endemic provinces in Zambia were randomly selected, and were enrolled at 12 months old. LLINs were followed every 6 months up to 30 months of age. Holes were counted and measured (finger, fist, and head method) and a proportional hole index (pHI) was calculated. Households were surveyed about net care and repair and if applicable, reasons for attrition. Functional survival was defined as nets with a pHI <643 and present for follow-up. At 12 and 24 months of age, 74 LLINs were randomly selected for examination of insecticidal activity and content using bioassay and chemical analysis methods previously described by the World Health Organization (WHO).ResultsA total of 999 LLINs were enrolled; 505 deltamethrin-treated polyester nets and 494 permethrin-treated polyethylene nets. With 74 used to examine insecticide activity, 925 were available for full follow-up. At 30 months, 325 (33 %) LLINs remained. Net attrition was primarily due to disposal (29 %). Presence of repairs and use over a reed mat were significantly associated with larger pHIs. By 30 months, only 56 % of remaining nets met criteria for functional survival. A shorter functional survival was associated with having been washed. At 24 months, nets had reduced insecticidal activity (57 % met WHO minimal criteria) and content (5 % met WHO target insecticide content).ConclusionsThe median functional survival time for LLINs observed the study was 2.5–3 years and insecticide activity and content were markedly decreased by 2 years. A better measure of net survival incorporating insecticidal field effectiveness, net physical integrity, and attrition is needed.
BackgroundThe impact of indoor residual spraying (IRS) and long-lasting insecticide nets (LLINs), key components of the national malaria control strategy of Mali, is threatened by vector insecticide resistance. The objective of this study was to assess the level of insecticide resistance in Anopheles gambiae sensu lato populations from Mali against four classes of insecticide recommended for IRS: organochlorines (OCs), pyrethroids (PYs), carbamates (CAs) and organophosphates (OPs). Characterization of resistance was done in 13 sites across southern Mali and assessed presence and distribution of physiological mechanisms that included target-site modifications: knockdown resistance (kdr) and altered acetycholinesterase (AChE), and/or metabolic mechanisms: elevated esterases, glutathione S-transferases (GSTs), and monooxygenases.MethodsThe World Health Organization (WHO) tube test was used to determine phenotypic resistance of An.gambiae s.l. to: dichlorodiphenyltrichloroethane (DDT) (OC), deltamethrin (PY), lambda-cyhalothrin (PY), bendiocarb (CA), and fenitrothion (OP). Identification of sibling species and presence of the ace-1R and Leu-Phe kdr, resistance-associated mutations, were determined using polymerase chain reaction (PCR) technology. Biochemical assays were conducted to detect increased activity of GSTs, oxidases and esterases.ResultsPopulations tested showed high levels of resistance to DDT in all 13 sites, as well as increased resistance to deltamethrin and lambda-cyhalothrin in 12 out of 13 sites. Resistance to fenitrothion and bendiocarb was detected in 1 and 4 out of 13 sites, respectively. Anopheles coluzzii, An. gambiae sensu stricto and Anopheles arabiensis were identified with high allelic frequencies of kdr in all sites where each of the species were found (13, 12 and 10 sites, respectively). Relatively low allelic frequencies of ace-1R were detected in four sites where this assessment was conducted. Evidence of elevated insecticide metabolism, based on oxidase, GSTs and esterase detoxification, was also documented.ConclusionMultiple insecticide-resistance mechanisms have evolved in An. coluzzii, An. gambiae s.s. and An.arabiensis in Mali. These include at least two target site modifications: kdr, and ace-1R, as well as elevated metabolic detoxification systems (monooxygenases and esterases). The selection pressure for resistance could have risen from the use of these insecticides in agriculture, as well as in public health. Resistance management strategies, based on routine resistance monitoring to inform insecticide-based malaria vector control in Mali, are recommended.
In 2014, a global ‘Call to Action’ seminar for the scale-up of intermittent preventive treatment of malaria in pregnancy was held during the 63rd Annual Meeting of the American Society of Tropical Medicine and Hygiene. This report summarizes the presentations and main discussion points from the meeting.Electronic supplementary materialThe online version of this article (doi:10.1186/s12936-015-0730-3) contains supplementary material, which is available to authorized users.
Intermittent preventive treatment of malaria in pregnancy is a highly cost-effective intervention which significantly improves maternal and birth outcomes among mothers and their newborns who live in areas of moderate to high malaria transmission. However, coverage in sub-Saharan Africa remains unacceptably low, calling for urgent action to increase uptake dramatically and maximize its public health impact. The ‘Global Call to Action’ outlines priority actions that will pave the way to success in achieving national and international coverage targets. Immediate action is needed from national health institutions in malaria-endemic countries, the donor community, the research community, members of the pharmaceutical industry and private sector, along with technical partners at the global and local levels, to protect pregnant women and their babies from the preventable, adverse effects of malaria in pregnancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.