Resonant two-photon ionization spectroscopy has been used to interrogate diatomic AlNi produced by laser vaporization of a 1:l alloy target in a supersonic molecular beam of helium. Although a large density of states in this molecule prohibits a concise elucidation of its electronic structure, the presence of discrete transitions has allowed several bands to be rotationally resolved. From the analysis of these bands the ground state has been determined as X 2A5,2, originating from the 3SA3&Ni$ configuration, and the bond length has been measured as 2.3211 f 0.0007 A. The dissociation energy and ionization potential of AlNi have also been determined as DG( AlNi) =2.29 f 0.05 eV and I.P. ( AlNi) = 6.95 f 0.09 eV, respectively.
I. INTRODUCTlONthe closed d-subshell analog, AD, and with other related
Three open 3d subshell transition metal aluminides, AlV, AlCr, and AlCo, have been investigated by resonant two-photon ionization spectroscopy to elucidate the chemical bonding in these diatomic molecules. The open nature of the 3d subshell results in a vast number of excited electronic states in these species, allowing bond strengths to be measured by the observation of abrupt predissociation thresholds in a congested optical spectrum, giving D00(AlV)=1.489±0.010 eV, D00(AlCr)=2.272±0.009 eV, and D00(AlCo)=1.844±0.002 eV. At lower excitation energies the presence of discrete transitions has permitted determinations of the ground state symmetries and bond lengths of AlV and AlCo through rotationally resolved studies, giving r0″ (AlV, Ω″=0)=2.620±0.004 Å and r0″ (AlCo, Ω″=3)=2.3833±0.0005 Å. Ionization energies were also measured for all three species, yielding IE(AlV)=6.01±0.10 eV, IE(AlCr)=5.96±0.04 eV, and IE(AlCo)=6.99±0.17 eV. A discussion of these results is presented in the context of previous work on AlCu, AlNi, AlCa, and AlZn.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.