Synaptic vesicle protein 2 (SV2) is a membrane glycoprotein common to all synaptic and endocrine vesicles. Unlike many proteins involved in synaptic exocytosis, SV2 has no homolog in yeast, indicating that it performs a function unique to secretion in higher eukaryotes. Although the structure and protein interactions of SV2 suggest multiple possible functions, its role in synaptic events remains unknown. To explore the function of SV2 in an in vivo context, we generated mice that do not express the primary SV2 isoform, SV2A, by using targeted gene disruption. Animals homozygous for the SV2A gene disruption appear normal at birth. However, they fail to grow, experience severe seizures, and die within 3 weeks, suggesting multiple neural and endocrine deficits. Electrophysiological studies of spontaneous inhibitory neurotransmission in the CA3 region of the hippocampus revealed that loss of SV2A leads to a reduction in action potential-dependent ␥-aminobutyric acid (GABA)ergic neurotransmission. In contrast, action potential-independent neurotransmission was normal. Analyses of synapse ultrastructure suggest that altered neurotransmission is not caused by changes in synapse density or morphology. These findings demonstrate that SV2A is an essential protein and implicate it in the control of exocytosis.
Restenosis remains the main complication of balloon angioplasty and/or stent implantation. Preclinical testing of new pharmacologic agents preventing restenosis largely rely on porcine models, where restenosis is assessed after endothelial abrasion of the arterial wall or stent implantation. We combined endothelial cell denudation and implantation of stents to develop a new clinically relevant porcine model of restenosis, and used this model to determine the effects of an α4 integrin inhibitor, ELN 457946, on restenosis. Balloon-angioplasty endothelial cell denudation and subsequent implantation of bare metal stents in the left anterior descending coronary, iliac, and left common carotid arteries was performed in domestic pigs, treated with vehicle or ELN 457946, once weekly via subcutaneous injections, for four weeks. After 1 month, histopathology and morphometric analyses of the arteries showed complete healing and robust, consistent restenotic response in stented arteries. Treatment with ELN 457946 resulted in a reduction in the neointimal response, with decreases in area percent stenosis between 12% in coronary arteries and 30% in peripheral vessels. This is the first description of a successful pig model combining endothelial cell denudation and bare metal stent implantation. This new double injury model may prove particularly useful to assess pharmacological effects of drug candidates on restenosis, in coronary and/or peripheral arteries. Furthermore, the ELN 457946 α4 integrin inhibitor, administered subcutaneously, reduced inflammation and restenosis in stented coronary and peripheral arteries in pigs, therefore representing a promising systemic therapeutic approach in reducing restenosis in patients undergoing angioplasty and/or stent implantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.