Expression of toxT, the transcription activator of cholera toxin and pilus production in Vibrio cholerae, is the consequence of a complex cascade of regulatory events that culminates in activation of the toxT promoter by TcpP and ToxR, two membrane-localized transcription factors. Both are encoded in operons with genes whose products, TcpH and ToxS, which are also membrane localized, are hypothesized to control their activity. In this study we analyzed the role of TcpH in controlling TcpP function. We show that a mutant of V. cholerae lacking TcpH expressed virtually undetectable levels of TcpP, although tcpP mRNA levels remain unaffected. A time course experiment showed that levels of TcpP, expressed from a plasmid, are dramatically reduced over time without co-overexpression of TcpH. By contrast, deletion of toxS did not affect ToxR protein levels. A fusion protein in which the TcpP periplasmic domain is replaced with that of ToxR remains stable, suggesting that the periplasmic domain of TcpP is the target for degradation of the protein. Placement of the periplasmic domain of TcpP on ToxR, an otherwise stable protein, results in instability, providing further evidence for the hypothesis that the periplasmic domain of TcpP is a target for degradation. Consistent with this interpretation is our finding that derivatives of TcpP lacking a periplasmic domain are more stable in V. cholerae than are derivatives in which the periplasmic domain has been truncated. This work identifies at least one role for the periplasmic domain of TcpP, i.e., to act as a target for a protein degradation pathway that regulates TcpP levels. It also provides a rationale for why the V. cholerae tcpH mutant strain is avirulent. We hypothesize that regulator degradation may be an important mechanism for regulating virulence gene expression in V. cholerae.
The authors have previously shown that overexpression of the Escherichia coli K-12 crcA, cspE and crcB genes protects the chromosome from decondensation by camphor. In this study they examine the phenotypic consequences of deleting or overexpressing crcA, cspE and crcB. Overexpressing crcA, cspE and crcB increases supercoiling levels of plasmids in wild-type cells and in temperature-sensitive (Ts) gyrase mutants, suppresses the sensitivity of gyrase and topoisomerase IV (topo IV) Ts mutants to nalidixic acid, makes gyrase and topo IV Ts mutants more resistant to camphor and corrects the nucleoid morphology defects in topo IV Ts mutants. Overexpression of crcA, cspE and crcB results in a slight (2?2-fold) activation of the rcsA gene. Deleting crcA, cspE and crcB is not lethal to cells but results in an increase in sensitivity to camphor. Deletion of crcA, cspE and crcB exacerbates the nucleoid morphology defects of the topo IV Ts mutants. When the individual crcA, cspE or crcB genes were tested for their effects on camphor resistance and regulation of rcsA, cspE alone conferred 10-fold camphor resistance and 1?7-fold activation of rcsA. These activities were augmented when crcB was overexpressed with cspE (100-fold camphor resistance and 2?1-fold induction of rcsA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.