Traumatic brain injury (TBI) is a common phenomenon, accounting for significant cost and adverse health effects. While there is information about focal pathologies following TBI, knowledge of more diffuse processes is lacking, particularly regarding how analgesics affect this pathology. As buprenorphine is the most commonly used analgesic in experimental TBI models, this study investigated the acute effects of the opioid analgesic buprenorphine (Bup-SR-Lab) on diffuse neuronal/glial pathology, neuroinflammation, cell damage, and systemic physiology. We utilized a model of central fluid percussion injury (CFPI) in adult male rats treated with a single subcutaneous bolus of Bup-SR-Lab or saline 15 min post-injury. Microscopic assessments were performed at 1 day post-injury. Cell impermeable dextran was infused intraventricularly prior to sacrifice to assess neuronal membrane disruption. Axonal injury was assessed by investigating labeling of the anterogradely transported amyloid precursor protein. Neuroinflammation was assessed by analyzing Iba-1 + microglial and GFAP + astrocyte histological/morphological features as well as cytokine levels in both regions of interest (ROIs). Myelin pathology was assessed by evaluating the expression of myelin basic protein (MBP) and the propensity of MBP + myelin debris. Acute physiologic data showed no difference between groups except for reduction in weight loss following cFPI in Bup treated animals compared to saline. There were no discernable differences in axonal injury or membrane disruption between treatment groups. Cytokine levels were consistent between Bup and saline treated animals, however, microglia and astrocytes revealed region specific histological changes at 1d following Bup treatment. Myelin integrity and overall MBP expression showed no differences between Bup and saline treated animals, but there were significant regional differences in MBP expression between the cortex and thalamus. These data suggest effects of Bup treatment on weight following CFPI and potential regional specificity of Bup-associated microglial and astrocyte alterations, but very little change in other acute pathology at 1-day post-injury. Overall, this preliminary study indicates that use of Bup-SR-Lab in preclinical work does have effects on acute glial pathology, however, longer term studies will be needed to assess potential effects of Bup treatment on more chronic pathological progressions.
Traumatic brain injury (TBI) is a major leading cause of death and disability. While previous studies regarding focal pathologies following TBI have been done, there is a lack of information concerning the role of analgesics and their influences on injury pathology. Buprenorphine (Bup), an opioid analgesic, is a commonly used analgesic in experimental TBI models. Our previous studies investigated the acute effects of Buprenorphine-sustained release-Lab (Bup-SR-Lab) on diffuse neuronal/glial pathology, neuroinflammation, cell damage, and systemic physiology. The current study investigated the longer-term chronic outcomes of Bup-SR-Lab treatment at 4 weeks following TBI utilizing a central fluid percussion injury (cFPI) model in adult male rats. Histological assessments of physiological changes, neuronal damage, cortical and thalamic cytokine expression, microglial and astrocyte morphological changes, and myelin alterations were done, as we had done in our acute study. In the current study the Whisker Nuisance Task (WNT) was also performed pre- and 4w post-injury to assess changes in somatosensory sensitivity following saline or Bup-SR-Lab treatment. Bup-SR-Lab treatment had no impact on overall physiology or neuronal damage at 4w post-injury regardless of region or injury, nor did it have any significant effects on somatosensory sensitivity. However, greater IL-4 cytokine expression with Bup-SR-Lab treatment was observed compared to saline treated animals. Microglia and astrocytes also demonstrated region-specific morphological alterations associated with Bup-SR-Lab treatment, in which cortical microglia and thalamic astrocytes were particularly vulnerable to Bup-mediated changes. There were discernable injury-specific and region-specific differences regarding myelin integrity and changes in specific myelin basic protein (MBP) isoform expression following Bup-SR-Lab treatment. This study indicates that use of Bup-SR-Lab could impact TBI-induced glial alterations in a region-specific manner 4w following diffuse brain injury.
AbstractsAlzheimer’s disease (AD) is a neurodegenerative disorder and is represented by complicated biological mechanisms and complexity of brain tissue. Our understanding of the complicated molecular architecture that contributes to AD progression benefits from performing comprehensive and systemic investigations with multi-layered molecular and biological data from different brain regions. Since recently different independent studies generated various omics data in different brain regions of AD patients, multi-omics data integration can be a useful resource for better comprehensive understanding of AD. Here we present a web platform, ADAS-viewer, that provides researchers with the ability to comprehensively investigate and visualize multi-omics data from multiple brain regions of AD patients. ADAS-viewer offers means to identify functional changes in transcript and exon expression (i.e., alternative splicing) along with associated genetic or epigenetic regulatory effects. Specifically, it integrates genomic, transcriptomic, methylation, and miRNA data collected from seven different brain regions (cerebellum, temporal cortex, dorsolateral prefrontal cortex, frontal pole, inferior frontal gyrus, parahippocampal gyrus, and superior temporal gyrus) across three independent cohort datasets. ADAS-viewer is particularly useful as a web-based application for analyzing and visualizing multi-omics data across multiple brain regions at both transcript and exon level, allowing the identification of candidate biomarkers of Alzheimer’s disease.
Traumatic brain injury (TBI) is a major leading cause of death and disability. While previous studies regarding focal pathologies following TBI have been done, there is a lack of information concerning the role of analgesics and their influences on injury pathology. Buprenorphine (Bup), an opioid analgesic, is a commonly used analgesic in experimental TBI models. Our previous studies investigated the acute effects of Buprenorphine-sustained release-Lab (Bup-SR-Lab) on diffuse neuronal/glial pathology, neuroinflammation, cell damage, and systemic physiology. The current study investigated the longer-term chronic outcomes of Bup-SR-Lab treatment at 4 weeks following TBI utilizing a central fluid percussion injury (cFPI) model in adult male rats. Histological assessments of physiological changes, neuronal damage, cortical and thalamic cytokine expression, microglial and astrocyte morphological changes, and myelin alterations were done, as we had done in our acute study. In the current study the Whisker Nuisance Task (WNT) was also performed pre- and 4w post-injury to assess changes in somatosensory sensitivity following saline or Bup-SR-Lab treatment. Bup-SR-Lab treatment had no impact on overall physiology or neuronal damage at 4w post-injury regardless of region or injury, nor did it have any significant effects on somatosensory sensitivity. However, greater IL-4 cytokine expression with Bup-SR-Lab treatment was observed compared to saline treated animals. Microglia and astrocytes also demonstrated region-specific morphological alterations associated with Bup-SR-Lab treatment, in which cortical microglia and thalamic astrocytes were particularly vulnerable to Bup-mediated changes. There were discernable injury-specific and region-specific differences regarding myelin integrity and changes in specific myelin basic protein (MBP) isoform expression following Bup-SR-Lab treatment. This study indicates that use of Bup-SR-Lab could impact TBI-induced glial alterations in a region-specific manor 4w following diffuse brain injury.
Background: Traumatic brain injury (TBI) is a common phenomenon, accounting for significant cost and adverse health effects. While there is information about focal pathologies following TBI, knowledge of more diffuse processes is lacking, particularly regarding how analgesics affect this pathology. As buprenorphine is the most commonly used analgesic in experimental TBI models, this study investigated the acute effects of the opioid analgesic buprenorphine (Bup-SR-Lab) on diffuse neuronal/glial pathology, neuroinflammation, cell damage, and systemic physiology. Methods: We utilized a model of central fluid percussion injury (CFPI) in adult male rats treated with a single subcutaneous bolus of Bup-SR-Lab or saline 15min post-injury. Microscopic assessments were performed at 1 day post-injury. Cell impermeable dextran was infused intraventricularly prior to sacrifice to assess neuronal membrane disruption. Axonal injury was assessed by investigating labeling of the anterogradely transported amyloid precursor protein. Neuroinflammation was assessed by analyzing Iba-1+ microglial and GFAP+ astrocyte histological/morphological features as well as cytokine levels in both regions of interest (ROIs). Myelin pathology was assessed by evaluating the expression of myelin basic protein (MBP) and the propensity of MBP+ myelin debris. Results: Acute physiologic data showed no difference between groups except for reduction in weight loss following cFPI in Bup treated animals compared to saline. There were no discernable differences in axonal injury or membrane disruption between treatment groups. Cytokine levels were consistent between Bup and saline treated animals, however, microglia and astrocytes revealed region specific histological changes at 1d following Bup treatment. Myelin integrity and overall MBP expression showed no differences between Bup and saline treated animals, but there were significant regional differences in MBP expression between the cortex and thalamus.Conclusions: These data suggest effects of Bup treatment on weight following CFPI and potential regional specificity of Bup-associated microglial and astrocyte alterations, but very little change in other acute pathology at 1-day post-injury. Overall, this preliminary study indicates that use of Bup-SR-Lab in preclinical work does have effects on acute glial pathology, however, longer term studies will be needed to assess potential effects of Bup treatment on more chronic pathological progressions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.