M 4 muscarinic acetylcholine receptor is a G protein-coupled receptor (GPCR) that has been associated with alcohol and cocaine abuse, Alzheimer's disease, and schizophrenia which makes it an interesting drug target. For many GPCRs, the high-affinity fluorescence ligands have expanded the options for high-throughput screening of drug candidates and serve as useful tools in fundamental receptor research. Here, we explored two TAMRA-labelled fluorescence ligands, UR-MK342 and UR-CG072, for development of assays for studying ligand-binding properties to M 4 receptor. Using budded baculovirus particles as M 4 receptor preparation and fluorescence anisotropy method, we measured the affinities and binding kinetics of both fluorescence ligands. Using the fluorescence ligands as reporter probes, the binding affinities of unlabelled ligands could be determined. Based on these results, we took a step towards a more natural system and developed a method using live CHO-K1-hM 4 R cells and automated fluorescence microscopy suitable for the routine determination of unlabelled ligand affinities. For quantitative image analysis, we developed random forest and deep learning-based pipelines for cell segmentation. The pipelines were integrated into the user-friendly open-source Aparecium software. Both image analysis methods were suitable for measuring fluorescence ligand saturation binding and kinetics as well as for screening binding affinities of unlabelled ligands.
Brightfield cell microscopy is a foundational tool in life sciences. The acquired images are prone to contain visual artifacts that hinder downstream analysis, and automatically removing them is therefore of great practical interest. Deep convolutional neural networks are state-of-the-art for image segmentation, but require pixel-level annotations, which are time-consuming to produce. Here, we propose ScoreCAM-U-Net, a pipeline to segment artifactual regions in brightfield images with limited user input. The model is trained using only image-level labels, so the process is faster by orders of magnitude compared to pixel-level annotation, but without substantially sacrificing the segmentation performance. We confirm that artifacts indeed exist with different shapes and sizes in three different brightfield microscopy image datasets, and distort downstream analyses such as nuclei segmentation, morphometry and fluorescence intensity quantification. We then demonstrate that our automated artifact removal ameliorates this problem. Such rapid cleaning of acquired images using the power of deep learning models is likely to become a standard step for all large scale microscopy experiments.
M4 muscarinic receptor is a G protein-coupled receptor that has been associated with alcohol and cocaine abuse, Alzheimer's disease and schizophrenia which makes it an interesting drug target. For many G protein-coupled receptors, the development of high-affinity fluorescence ligands has expanded the options for high throughput screening of drug candidates and serve as useful tools in fundamental receptor research. So far, the lack of suitable fluorescence ligands has limited studying M4 receptor ligand binding. Here, we explored the possibilities of using fluorescence-based methods for studying binding affinity and kinetics to M4 receptor of both labeled and unlabeled ligands. We used two TAMRA-labeled fluorescence ligands, UR-MK342 and UR-CG072, for assay development. Using budded baculovirus particles as M4 receptor preparation and fluorescence anisotropy method, we determined the affinities and binding kinetics of both fluorescence ligands. The fluorescence ligands could also be used as reported probes for determining binding affinities of a set of unlabeled ligands. Based on these results, we took a step further towards a more natural signaling system and developed a method using live CHO-K1-hM4R cells and automated fluorescence microscopy suitable for routine determination of unlabeled ligand affinities. For quantitative image analysis, we developed random forest and deep learning-based pipelines for cell segmentation. The pipelines were integrated into the user-friendly open-source Aparecium software. All developed assays were suitable for measuring fluorescence ligand saturation binding, association and dissociation kinetics as well as for screening binding affinities of unlabeled ligands.
Brightfield cell microscopy is a foundational tool in life sciences. The acquired images are prone to contain visual artifacts that hinder downstream analysis, and automatically removing them is therefore of great practical interest. Deep convolutional neural networks are state-of-the-art for image segmentation, but require pixel-level annotations, which are time-consuming to produce. Here, we propose ScoreCAM-U-Net, a pipeline to segment artifactual regions in brightfield images with limited user input. The model is trained using only image-level labels, so the process is faster by orders of magnitude compared to pixel-level annotation, but without substantially sacrificing the segmentation performance. We confirm that artifacts indeed exist with different shapes and sizes in three different brightfield microscopy image datasets, and distort downstream analyses such as nuclei segmentation, morphometry and fluorescence intensity quantification. We then demonstrate that our automated artifact removal ameliorates this problem. Such rapid cleaning of acquired images using the power of deep learning models is likely to become a standard step for all large scale microscopy experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.