Since 1991, the NAD(P)H-aided conversion of resazurin to fluorescent resorufin has been widely used to measure viability based on the metabolic activity in mammalian cell culture and primary cells. However, different research groups have used divergent assay protocols, scarcely reporting the systematic optimization of the assay. Here, we perform extensive studies to fine-tune the experimental protocols utilizing resazurin-based viability sensing. Specifically, we focus on (A) optimization of the assay dynamic range in individual cell lines for the correct measurement of cytostatic and cytotoxic properties of the compounds; (B) dependence of the dynamic range on the physical quantity detected (fluorescence intensity versus change of absorbance spectrum); (C) calibration of the assay for the correct interpretation of data measured in hypoxic conditions; and (D) possibilities for combining the resazurin assay with other methods including measurement of necrosis and apoptosis. We also demonstrate the enhanced precision and flexibility of the resazurin-based assay regarding the readout format and kinetic measurement mode as compared to the widely used analogous assay which utilizes tetrazolium dye MTT. The discussed assay optimization guidelines provide useful instructions for the beginners in the field and for the experienced scientists exploring new ways for measurement of cellular viability using resazurin.
The recent crystallization of the neuropeptide Y Y 1 receptor (Y 1 R) in complex with the argininamide-type Y 1 R selective antagonist UR-MK299 (2) opened up a new approach toward structure-based design of nonpeptidic Y 1 R ligands. We designed novel fluorescent probes showing excellent Y 1 R selectivity and, in contrast to previously described fluorescent Y 1 R ligands, considerably higher (∼100-fold) binding affinity. This was achieved through the attachment of different fluorescent dyes to the diphenylacetyl moiety in 2 via an amine-functionalized linker. The fluorescent ligands exhibited picomolar Y 1 R binding affinities (pK i values of 9.36−9.95) and proved to be Y 1 R antagonists, as validated in a Fura-2 calcium assay. The versatile applicability of the probes as tool compounds was demonstrated by flow cytometry-and fluorescence anisotropy-based Y 1 R binding studies (saturation and competition binding and association and dissociation kinetics) as well as by widefield and total internal reflection fluorescence (TIRF) microscopy of live tumor cells, revealing that fluorescence was mainly localized at the plasma membrane.
M
4
muscarinic acetylcholine receptor is a G protein-coupled receptor (GPCR) that has been associated with alcohol and cocaine abuse, Alzheimer's disease, and schizophrenia which makes it an interesting drug target. For many GPCRs, the high-affinity fluorescence ligands have expanded the options for high-throughput screening of drug candidates and serve as useful tools in fundamental receptor research. Here, we explored two TAMRA-labelled fluorescence ligands, UR-MK342 and UR-CG072, for development of assays for studying ligand-binding properties to M
4
receptor. Using budded baculovirus particles as M
4
receptor preparation and fluorescence anisotropy method, we measured the affinities and binding kinetics of both fluorescence ligands. Using the fluorescence ligands as reporter probes, the binding affinities of unlabelled ligands could be determined. Based on these results, we took a step towards a more natural system and developed a method using live CHO-K1-hM
4
R cells and automated fluorescence microscopy suitable for the routine determination of unlabelled ligand affinities. For quantitative image analysis, we developed random forest and deep learning-based pipelines for cell segmentation. The pipelines were integrated into the user-friendly open-source Aparecium software. Both image analysis methods were suitable for measuring fluorescence ligand saturation binding and kinetics as well as for screening binding affinities of unlabelled ligands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.