The fission yeast F-BAR proteins Cdc15 and Imp2 and their combined SH3-domain partners appear to act as “molecular glue” to stabilize the interaction between the plasma membrane and a complex network of proteins at the division site that mediates cell division.
SummaryEukaryotes remodel the nucleus during mitosis using a variety of mechanisms that differ in the timing and the extent of nuclear envelope (NE) breakdown. Here, we probe the principles enabling this functional diversity by exploiting the natural divergence in NE management strategies between the related fission yeasts Schizosaccharomyces pombe and Schizosaccharomyces japonicus [1, 2, 3]. We show that inactivation of Ned1, the phosphatidic acid phosphatase of the lipin family, by CDK phosphorylation is both necessary and sufficient to promote NE expansion required for “closed” mitosis in S. pombe. In contrast, Ned1 is not regulated during division in S. japonicus, thus limiting membrane availability and necessitating NE breakage. Interspecies gene swaps result in phenotypically normal divisions with the S. japonicus lipin acquiring an S. pombe-like mitotic phosphorylation pattern. Our results provide experimental evidence for the mitotic regulation of phosphatidic acid flux and suggest that the regulatory networks governing lipin activity diverged in evolution to give rise to strikingly dissimilar mitotic programs.
The calcium-activated chloride channel hCLCA2 has been identified as a candidate tumor suppressor in human breast cancer. It is greatly down-regulated in breast cancer, and its re-expression suppresses tumorigenesis by an unknown mechanism. To establish a mouse model, we identified the mouse ortholog of hCLCA2, termed mCLCA5, and investigated its behavior in mammary epithelial cell lines and tissues. Expression in the immortalized cell line HC11 correlated with slow or arrested growth. Although rapidly dividing, sparsely plated cells had low levels of expression, mCLCA5 was induced by 10-fold when cells became confluent and 30-fold when cells were deprived of growth factors or anchorage. The apoptosis effector Bax was induced in parallel. Like hCLCA2, mCLCA5 was down-regulated in metastatic mammary tumor cell lines such as 4T1 and CSML-100. Ectopic re-expression in 4T1 cells caused a 20-fold reduction in colony survival relative to vector control. High mCLCA5 expression in stable clones inhibited proliferation and enhanced sensitivity to detachment. Moreover, mCLCA5 was induced in lactating and involuting mammary gland, correlating with differentiation and onset of apoptosis. Together, these results establish mCLCA5 as the mouse ortholog of hCLCA2, demonstrate that mCLCA5 is a detachment-sensitive growth inhibitor, and suggest a mechanism whereby these channels may antagonize mammary tumor progression.
Graphical Abstract Highlights d Anillin-like Mid1 is a substrate of the SIN kinase Sid2 d SIN signaling controls Mid1's membrane localization d Sid2 temporally regulates Cdr2-Mid1 association d Cdr2 and Mid1 are key SIN substrates for resetting cell division site placement
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.