Effective approaches to neuropsychiatric disorders require detailed understanding of the cellular composition and circuitry of the complex mammalian brain. Here, we present a paradigm for deconstructing the diversity of neurons defined by a specific neurotransmitter, using a microfluidic dynamic array to simultaneously evaluate the expression of 96 genes in single neurons. With this approach, we successfully identified multiple molecularly distinct dopamine neuron subtypes, and localized them in the adult mouse brain. To validate the anatomical and functional correlates of molecular diversity, we provide evidence that one Vip+ subtype, located in the periaqueductal region, has a discrete projection field within the extended amygdala. Another Aldh1a1+ subtype, located in the substantia nigra, is especially vulnerable in the MPTP model of Parkinson’s disease. Overall, this rapid, cost-effective approach enables the identification and classification of multiple dopamine neuron subtypes, with distinct molecular, anatomical, and functional properties.
Parkinson disease (PD) is characterized by loss of the A9 nigral neurons that provide dopaminergic innervation to the striatum. This discovery led to the successful instigation of dopaminergic drug treatments in the 1960s, although these drugs were soon recognized to lose some of their efficacy and generate their own adverse effects over time. Despite the fact that PD is now known to have extensive non-nigral pathology with a wide range of clinical features, dopaminergic drug therapies are still the mainstay of therapy, and work well for many years. Given the success of pharmacological dopamine replacement, pursuit of cell-based dopamine replacement strategies seemed to be the next logical step, and studies were initiated over 30 years ago to explore the possibility of dopaminergic cell transplantation. In this Review, we outline the history of this therapeutic approach to PD and highlight the lessons that we have learned en route. We discuss how the best clinical outcomes have been obtained with fetal ventral mesencephalic allografts, while acknowledging inconsistencies in the results owing to problems in trial design, patient selection, tissue preparation, and immunotherapy used post-grafting. We conclude by discussing the challenges of bringing the new generation of stem cell-derived dopamine cells to the clinic.
Taken together, our results provide evidence for alterations in the cerebral vasculature in HD leading to BBB leakage, both in the R6/2 mouse model and in HD patients, a phenomenon that may, in turn, have important pathophysiological implications.
Direct conversion of human fibroblasts into mature and functional neurons, termed induced neurons (iNs), was achieved for the first time 6 years ago. This technology offers a promising shortcut for obtaining patient‐ and disease‐specific neurons for disease modeling, drug screening, and other biomedical applications. However, fibroblasts from adult donors do not reprogram as easily as fetal donors, and no current reprogramming approach is sufficiently efficient to allow the use of this technology using patient‐derived material for large‐scale applications. Here, we investigate the difference in reprogramming requirements between fetal and adult human fibroblasts and identify REST as a major reprogramming barrier in adult fibroblasts. Via functional experiments where we overexpress and knockdown the REST‐controlled neuron‐specific microRNAs miR‐9 and miR‐124, we show that the effect of REST inhibition is only partially mediated via microRNA up‐regulation. Transcriptional analysis confirmed that REST knockdown activates an overlapping subset of neuronal genes as microRNA overexpression and also a distinct set of neuronal genes that are not activated via microRNA overexpression. Based on this, we developed an optimized one‐step method to efficiently reprogram dermal fibroblasts from elderly individuals using a single‐vector system and demonstrate that it is possible to obtain iNs of high yield and purity from aged individuals with a range of familial and sporadic neurodegenerative disorders including Parkinson's, Huntington's, as well as Alzheimer's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.