Cu/TEMPO catalyst systems promote efficient aerobic oxidation of sterically unhindered primary alcohols and electronically activated substrates, but they show reduced reactivity with aliphatic and secondary alcohols. Here, we report a catalyst system, consisting of ((MeO)bpy)Cu(I)(OTf) and ABNO ((MeO)bpy = 4,4'-dimethoxy-2,2'-bipyridine; ABNO = 9-azabicyclo[3.3.1]nonane N-oxyl), that mediates aerobic oxidation of all classes of alcohols, including primary and secondary allylic, benzylic, and aliphatic alcohols with nearly equal efficiency. The catalyst exhibits broad functional group compatibility, and most reactions are complete within 1 h at room temperature using ambient air as the source of oxidant.
This protocol describes a practical laboratory-scale method for aerobic oxidation of primary alcohols to aldehydes, using a chemoselective CuI/TEMPO catalyst system. The catalyst is prepared in situ from commercially available reagents, and the reactions are performed in a common organic solvent (acetonitrile) with ambient air as the oxidant. Three different reaction conditions and three procedures for the isolation and purification of the aldehyde product are presented. The oxidations of eight different alcohols, described here, include representative examples of each reaction condition and purification method. Reaction times vary from 20 min to 24 h, depending on the alcohol, while the purification methods each take about 2 h. The total time necessary for the complete protocol ranges from 3 – 26 h.
Various dihaloazoles can be monoarylated at a single C-X bond with high selectivity via Suzuki coupling. By changing the palladium catalyst employed, the selectivity can be switched for some dihaloazoles, allowing for Suzuki coupling at the other, traditionally less reactive C-X bond. These conditions are applicable to coupling of a wide variety of aryl-, heteroaryl-, cyclopropyl-, and vinylboronic acids with high selectivities and enable the rapid construction of diverse arrays of diarylazoles in a modular fashion.
An improved Cu/nitroxyl catalyst system for aerobic alcohol oxidation has been developed for the oxidation of functionalized primary and secondary alcohols to aldehydes and ketones, suitable for implementation in batch and flow processes. This catalyst, which has been demonstrated in a >50 g scale batch reaction, addresses a number of process limitations associated with a previously reported ( MeO bpy)Cu I /ABNO/NMI catalyst system ( MeO bpy = 4,4′-dimethoxy-2,2′-bipyridine, ABNO = 9-azabicyclo[3.3.1]nonane N-oxyl, NMI = N-methylimidazole). Important catalyst modifications include the replacement of [Cu(MeCN) 4 ]OTf with a lower-cost Cu source, CuI, reduction of the ABNO loading to 0.05−0.3 mol%, and use of NMI as the only ligand/additive (i.e., without a need for MeO bpy). Use of a high flash point solvent, N-methylpyrrolidone, enables safe operation in batch reactions with air as the oxidant. For continuous-flow applications compatible with elevated gas pressures, better performance is observed with acetonitrile as the solvent.
A new bis(imino)pyridine compound, 2,6-{(2,6-Me(2)-C(6)H(3))NC(t-Bu)}(2)C(5)H(3)N (), has been synthesized with t-butyl substituents on the imino carbon atoms. The stepwise synthetic method for assembly of this compound is novel. Compound and its synthetic precursor, mono(imino)pyridine , have been characterized using single-crystal X-ray diffraction. Metalation attempts of using iron(ii) chloride under forcing conditions does not yield the desired iron(ii) chloride complex; the use of refluxing acetic acid solvent provides a minimal amount of a paramagnetic species that has been characterized by NMR spectroscopy and magnetic susceptibility (NMR method). Computational methods have been used to evaluate the relative energies of three conformations of bis(imino)pyridine ligands with varying alkyl substitution at the imino carbon positions. The relative energies of these closed, open and open-planar conformations of reveal a thermodynamic argument for the difficulty in metalation of , as compared to related ligands with less steric hindrance at the imino carbon atoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.