During a mark–recapture study of Townsend's ground squirrels (Spermophilus townsendii) on 20 sites in the Snake River Birds of Prey National Conservation Area, Idaho, in 1991 through 1994, 4407 animals were marked in 17639 capture events. This study of differences in population dynamics of Townsend's ground squirrels among habitats spanned a drought near the extreme of the 130‐yr record, followed by prolonged winter conditions. Townsend's ground squirrels have a short active season (≈4 mo) in which to reproduce and store fat for overwintering. Their food consists largely of succulent grasses and forbs in this dry shrubsteppe and grassland habitat. The drought in the latter half of the 1992 active season produced early drying of Sandberg's bluegrass (Poa secunda) and was associated with low adult and juvenile body masses prior to immergence into estivation/hibernation. The following prolonged winter was associated with late emergence of females in 1993. Early‐season body masses of adults were low in 1993 relative to 1992, whereas percentage of body fat in males was relatively high. These weather patterns in spring 1992 and winter 1993 also resulted in reduced adult persistence through the ≈7‐mo inactive period, especially for adult females, and near‐zero persistence of >1200 juveniles. Consequently, densities of Townsend's ground squirrels across the 20 livetrap sites declined. The demographic effects of drought and prolonged winter lasted at least through the subsequent breeding season. Adult females that survived these weather extremes produced fewer emergent young per female than did adult females prior to the event. Prior to the drought/prolonged winter, yearling female body masses were higher than, or indistinguishable from, those of adults. Females produced in 1993 had lower body masses as yearlings than did adult females. Demographic response to the drought and prolonged winter varied with habitat; ground squirrels in sagebrush habitat showed less decline in persistence and density and produced more young per female during the next active season following the drought (1993) than did ground squirrels in grassland habitat, where densities had been significantly higher prior to the drought and prolonged winter. Studies involving habitat comparisons of animal demography should always be placed in the context of long‐term weather patterns, because habitat quality rankings based on density, reproduction, and survival may differ with environmental conditions. Physiological effects of environmental “crunches” on consumers may persist beyond the period of influence on food resources, reducing reproductive success and growth rates of future offXspring.
Five insect biological control agents that attack flower heads of spotted knapweed, Centaurea stoebe L. subsp. micranthos (Gugler) Hayek, became established in western Montana between 1973 and 1992. In a controlled field experiment in 2006, seed-head insects reduced spotted knapweed seed production per seed head by 84.4%. The seed production at two sites in western Montana where these biological control agents were well established was 91.6-93.8% lower in 2004-2005 than 1974-1975, whereas the number of seed heads per square meter was 70.7% lower, and the reproductive potential (seeds/m(2)) was 95.9-99.0% lower. The average seed bank in 2005 at four sites containing robust spotted knapweed populations was 281 seeds/m(2) compared with 19 seeds/m(2) at four sites where knapweed density has declined. Seed bank densities were much higher at sites in central Montana (4,218 seeds/m(2)), where the insects have been established for a shorter period. Urophora affinis Frauenfeld was the most abundant species at eight study sites, infesting 66.7% of the seed heads, followed by a 47.3% infestation by Larinus minutus Gyllenhal and L. obtusus Gyllenhal. From 1974 to 1985, Urophora spp. apparently reduced the number of seeds per seed head by 34.5-46.9%; the addition of Larinus spp. further reduced seed numbers 84.2-90.5% by 2005. Path analysis indicated that both Larinus spp. and U. affinis contributed significantly to reduction of seed production over the 30-yr period. Spotted knapweed density may not decrease significantly until the seed bank falls below a critical threshold.
Five insect biological control agents that attack flower heads of spotted knapweed, Centaurea stoebe L. subsp. micranthos (Gugler) Hayek, became established in western Montana between 1973 and 1992. In a controlled field experiment in 2006, seed-head insects reduced spotted knapweed seed production per seed head by 84.4%. The seed production at two sites in western Montana where these biological control agents were well established was 91.6-93.8% lower in 2004-2005 than 1974-1975, whereas the number of seed heads per square meter was 70.7% lower, and the reproductive potential (seeds/m(2)) was 95.9-99.0% lower. The average seed bank in 2005 at four sites containing robust spotted knapweed populations was 281 seeds/m(2) compared with 19 seeds/m(2) at four sites where knapweed density has declined. Seed bank densities were much higher at sites in central Montana (4,218 seeds/m(2)), where the insects have been established for a shorter period. Urophora affinis Frauenfeld was the most abundant species at eight study sites, infesting 66.7% of the seed heads, followed by a 47.3% infestation by Larinus minutus Gyllenhal and L. obtusus Gyllenhal. From 1974 to 1985, Urophora spp. apparently reduced the number of seeds per seed head by 34.5-46.9%; the addition of Larinus spp. further reduced seed numbers 84.2-90.5% by 2005. Path analysis indicated that both Larinus spp. and U. affinis contributed significantly to reduction of seed production over the 30-yr period. Spotted knapweed density may not decrease significantly until the seed bank falls below a critical threshold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.