Various studies suggest that Hedgehog (Hh) signalling plays roles in human and zebrafish ocular development. Recent studies (Kerr et al., Invest Ophthalmol Vis Sci. 2012; 53, 3316–30) showed that conditionally activating Hh signals promotes murine lens epithelial cell proliferation and disrupts fibre differentiation. In this study we examined the expression of the Hh pathway and the requirement for the Smoothened gene in murine lens development. Expression of Hh pathway components in developing lens was examined by RT-PCR, immunofluorescence and in situ hybridisation. The requirement of Smo in lens development was determined by conditional loss-of-function mutations, using LeCre and MLR10 Cre transgenic mice. The phenotype of mutant mice was examined by immunofluorescence for various markers of cell cycle, lens and cornea differentiation. Hh pathway components (Ptch1, Smo, Gli2, Gli3) were detected in lens epithelium from E12.5. Gli2 was particularly localised to mitotic nuclei and, at E13.5, Gli3 exhibited a shift from cytosol to nucleus, suggesting distinct roles for these transcription factors. Conditional deletion of Smo, from ∼E12.5 (MLR10 Cre) did not affect ocular development, whereas deletion from ∼E9.5 (LeCre) resulted in lens and corneal defects from E14.5. Mutant lenses were smaller and showed normal expression of p57Kip2, c-Maf, E-cadherin and Pax6, reduced expression of FoxE3 and Ptch1 and decreased nuclear Hes1. There was normal G1-S phase but decreased G2-M phase transition at E16.5 and epithelial cell death from E14.5-E16.5. Mutant corneas were thicker due to aberrant migration of Nrp2+ cells from the extraocular mesenchyme, resulting in delayed corneal endothelial but normal epithelial differentiation. These results indicate the Hh pathway is required during a discrete period (E9.5–E12.5) in lens development to regulate lens epithelial cell proliferation, survival and FoxE3 expression. Defective corneal development occurs secondary to defects in lens and appears to be due to defective migration of peri-ocular Nrp2+ neural crest/mesenchymal cells.
Citation: Downie LE, Choi J, Lim JKH, Chinnery HR. Longitudinal changes to tight junction expression and endothelial cell integrity in a mouse model of sterile corneal inflammation. Invest Ophthalmol Vis Sci. 2016;57:3477-3484. DOI:10.1167/iovs.15-19005 PURPOSE. We previously reported that applying toll-like receptor (TLR) ligands to an injured cornea induces corneal edema at 24 hours, which subsides by 1 week. We tested the hypotheses that endothelial expression of the tight-junction protein, zonula occludens-1 (ZO-1), would be altered during experimental sterile corneal inflammation and that endothelial cell density (ECD) would remain unaffected.METHODS. Anesthetized C57BL/6J mice received central 1-mm corneal abrasions followed by topical application of saline or cytosine-phosphate-guanosine oligodeoxynucleotide (CpG-ODN, TLR-9 agonist). At 24 hours, 1 week and 4 weeks post treatment, spectral-domain optical coherence tomography images were captured. Eyes were enucleated and processed for zonula occludens-1 (ZO-1) immunofluorescent staining. Corneal flatmounts were analyzed for endothelial ZO-1 expression, cell density, polymegethism, and polymorphism. Corneal stromal inflammatory cell infiltration was evaluated at 4 weeks by immunostaining for CD45.RESULTS. Central corneal thickness (CCT) was increased in CpG-ODN treated eyes at 24 hours, had normalized by 1 week, but was again thickened by 4 weeks. In eyes with CpG-ODN, endothelial cell ZO-1 expression was reduced at 24 hours but returned to normal levels by 1 week. Endothelial cell density was not altered at 24 hours or 1 week. By 4 weeks, only CpG-ODN eyes showed relatively reduced ECD, as well as large numbers of CD45 þ cells in the stroma. Changes to ECD correlated with CCT (r ¼ À0.53, P < 0.01). Compared with naïve controls, more saline-and CpG-ODN-treated eyes exhibited polymegethism.CONCLUSIONS. This study provides novel insights into the interplay between endothelial cell integrity, corneal edema, and chronic stromal leukocyte activation during sterile corneal inflammation in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.