In New York state, there are three races of European corn borer moths, which are characterized principally by differences in voltinism and the sex pheromone communication system. One race is bivoltine, with females producing and males responding to a 99:1 EIZ isomeric ratio of~1l-14:0Ac's as the sex pheromone. Two races, one univoltine and one bivoltine, produce and respond to a 3:97 E 12 blend of~1l-14 :OAc·s. The races are referred to as BE, UZ, and BZ to denote these differences. Analyses by gas chromatography of field-collected females indicate that there is significant hybridization between the Z and E races when in sympatry, with hybrid females producing a 68:32 ratio of E/Zl1-14:OAc. Gene flow among the races was investigated using differences in triose phosphate isomerase (TPI) allozyme frequencies of moths from sites sampled across the state. The fixed nature of the Tpi-l allele in the BE race and increases in the Tpi-l allele frequencies in UZ populations in sympatry with the BE race support the hypothesis that gene flow following hybridization is unidirectional from BE populations into the Z populations. In addition, the TPI genotypes of the 10 hybrid females analyzed were consistent with hybridization occurring by E males mating with Z females.
Northern, Diabrotica barberi Smith & Lawrence, and western, D. virgifera virgifera LeConte, corn rootworms (Coleoptera: Chrysomelidae) are major economic pests of corn, Zea mays L., in North America. Corn hybrids expressing Bacillus thuringiensis Berliner (Bt) toxins are commonly used by growers to manage these pests. Several cases of field-evolved resistance to insecticidal proteins expressed by Bt corn hybrids have been documented in many corn-producing areas of North America, but only for D. v. virgifera. In 2016, beetles of both species were collected from five eastern North Dakota corn fields and reared in a growth chamber. In 2017, larvae reared from those populations were subjected to single-plant bioassays to screen for potential resistance to Cry3Bb1, Cry34/35Ab1, and pyramided Cry3Bb1 + Cry34/35Ab1 Bt toxins. Our results provide the first documented report of field-evolved resistance in D. barberi to corn hybrids expressing Cry3Bb1 (Arthur problem population) and Cry34/35Ab1 (Arthur and Page problem populations, and the Ransom and Sargent populations) proteins in North America. Resistance to Cry3Bb1 was also observed in the Ransom population of D. v. virgifera. Increased larval survival on the pyramided Cry3Bb1 + Cry34/35Ab1 hybrid was observed in both species. No cross-resistance was evident between Cry3Bb1 and Cry34/35Ab1 in any of the D. barberi populations tested. Our experiments identified field-evolved resistance to Bt toxins in some North Dakota populations of D. barberi and D. v. virgifera. Thus, more effective control tools and improved resistance management strategies are needed to prolong the durability of this technology for managing these important pests.
Landscape simplification associated with agricultural intensification has important effects on economically important arthropods. The declining cover of natural and semi-natural habitats, in particular, has been shown to reduce natural-enemy attack of crop pests, but also in some cases reduced crop colonization by such pests. In this study, we examined the influence of changes in two elements of landscape composition, natural grassland cover and cover of a highly suitable crop host, on infestation by a generalist insect pest in wheat, and parasitism of this pest by its dominant natural enemies. Surprisingly, we found no significant influences of increasing natural grassland habitat, at either local or landscape scales, on infestation by the wheat stem sawfly, Cephus cinctus, or parasitism of this pest by the native parasitoid wasps, Bracon cephiand Bracon lissogaster. In contrast, we found significant increases in levels of C. cinctus infestation with increasing wheat cover at the landscape scale. This pattern was consistent across six study regions spanning three states in the northern Great Plains of North America, despite large differences in cropping systems and pest population densities across regions. Regional variation in pest infestation was best explained by long-term averages in precipitation, with higher C. cinctus infestation rates found in drier regions. Results suggest that landscape-mediated variation in pest pressure in this system is better explained by a direct response of pest insects to increasing cover of a highly suitable crop rather than an indirect response via reductions in natural enemies as natural habitat declines. The implication is that habitat diversification at the landscape scale could play a role in suppressing agricultural pest populations via reductions in area of suitable crop hosts. RightsWorks produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted. b s t r a c tLandscape simplification associated with agricultural intensification has important effects on economically important arthropods. The declining cover of natural and semi-natural habitats, in particular, has been shown to reduce natural-enemy attack of crop pests, but also in some cases reduced crop colonization by such pests. In this study, we examined the influence of changes in two elements of landscape composition, natural grassland cover and cover of a highly suitable crop host, on infestation by a generalist insect pest in wheat, and parasitism of this pest by its dominant natural enemies. Surprisingly, we found no significant influences of increasing natural grassland habitat, at either local or landscape scales, on infestation by the wheat stem sawfly, Cephus cinctus, or parasitism of this pest by the native parasitoid wasps, Bracon cephi and Bracon lissogaster. In contrast, we found significant increases in levels of C. cinctus infestation with increasing wheat cover at the landscape scale. Thi...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.