In this paper, we introduce a small variation to current approaches broadly called Taguchi Robust Design Methods. In these methods, there are two broad categories of problems associated with simultaneously minimizing performance variations and bringing the mean on target, namely, Type I—minimizing variations in performance caused by variations in noise factors (uncontrollable parameters). Type II—minimizing variations in performance caused by variations in control factors (design variables). In this paper, we introduce a variation to the existing approaches to solve both types of problems. This variation embodies the integration of the Response Surface Methodology (RSM) with the compromise Decision Support Problem (DSP). Our approach is especially useful for design problems where there are no closed-form solutions and system performance is computationally expensive to evaluate. The design of a solar powered irrigation system is used as an example.
Preliminary design of a complex system often involves exploring a broad design space. This may require repeated use of computationally expensive simulations. To ease the computational burden, surrogate models are built to provide rapid approximations of more expensive models. However, the surrogate models themselves are often expensive to build because they are based on repeated experiments with computationally expensive simulations. An alternative approach is to replace the detailed simulations with simplified approximate simulations, thereby sacrificing accuracy for reduced computational time. Naturally, surrogate models built from these approximate simulations are also imprecise. A strategy is needed for improving the precision of surrogate models based on approximate simulations without significantly increasing computational time. In this paper, a new approach is taken to integrate data from approximate and detailed simulations to build a surrogate model that describes the relationship between output and input parameters. Experimental results from approximate simulations form the bulk of the data, and they are used to build a model based on a Gaussian process. The fitted model is then “adjusted” by incorporating a small amount of data from detailed simulations to obtain a more accurate prediction model. The effectiveness of this approach is demonstrated with a design example involving cellular materials for an electronics cooling application. The emphasis is on the method and not on the results per se.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.