This review focuses on recent progress in our understanding of how mast cells can contribute to the initiation, development, expression, and regulation of acquired immune responses, both those associated with IgE and those that are apparently expressed independently of this class of Ig. We emphasize findings derived from in vivo studies in mice, particularly those employing genetic approaches to influence mast cell numbers and/or to alter or delete components of pathways that can regulate mast cell development, signaling, or function. We advance the hypothesis that mast cells not only can function as proinflammatory effector cells and drivers of tissue remodeling in established acquired immune responses, but also may contribute to the initiation and regulation of such responses. That is, we propose that mast cells can also function as immunoregulatory cells. Finally, we show that the notion that mast cells have primarily two functional configurations, off (or resting) or on (or activated for extensive mediator release), markedly oversimplifies reality. Instead, we propose that mast cells are "tunable," by both genetic and environmental factors, such that, depending on the circumstances, the cell can be positioned phenotypically to express a wide spectrum of variation in the types, kinetics, and/or magnitude of its secretory functions.
Mast cells can function as effector and immunoregulatory cells in IgE-associated allergic disorders, as well as in certain innate and adaptive immune responses. This review will focus on exciting new developments in the field of mast cell biology published within the last year. It will highlight advances in the understanding of FcεRI-mediated signaling and mast cell activation events, as well as in the use of genetic models to study mast cell function in vivo. Finally, we will discuss newly identified roles of mast cells or individual mast cell products, such as proteases and IL-10, in host defense, cardiovascular disease and tumor biology, and in settings in which mast cells have anti-inflammatory or immunosuppressive functions.
Although IgE binding to mast cells is thought to be a passive presensitization step, we demonstrate herein that monomeric IgE (mIgE) in the absence of antigen (Ag) stimulates multiple phosphorylation events in normal murine bone marrow-derived mast cells (BMMCs). While mIgE does not induce degranulation or leukotriene synthesis, it leads to a more potent production of cytokines than IgE + Ag. Moreover, mIgE prevents the apoptosis of cytokine-deprived BMMCs, likely by maintaining Bcl-X(L) levels and producing autocrine-acting cytokines. The addition of Ag does not increase this IgE-induced survival. Since IgE concentrations as low as 0.1 microg/ml enhance BMMC survival, elevated plasma IgE levels in humans with atopic disorders may contribute to the elevated mast cell numbers seen in these individuals.
Allergic contact dermatitis, such as in response to poison ivy or poison oak, and chronic low-dose ultraviolet B irradiation can damage the skin. Mast cells produce proinflammatory mediators that are thought to exacerbate these prevalent acquired immune or innate responses. Here we found that, unexpectedly, mast cells substantially limited the pathology associated with these responses, including infiltrates of leukocytes, epidermal hyperplasia and epidermal necrosis. Production of interleukin 10 by mast cells contributed to the anti-inflammatory or immunosuppressive effects of mast cells in these conditions. Our findings identify a previously unrecognized function for mast cells and mast cell-derived interleukin 10 in limiting leukocyte infiltration, inflammation and tissue damage associated with immunological or innate responses that can injure the skin.
An initial exposure to lipopolysaccharide (LPS) induces a transient state of hyporesponsiveness to a subsequent challenge with LPS. The mechanism underlying this phenomenon, termed endotoxin tolerance, remains poorly understood despite a recent resurgence of interest in this area. We demonstrate herein that SHIP(-/-) bone marrow-derived macrophages (BMmphis) and mast cells (BMMCs) do not display endotoxin tolerance. Moreover, an initial LPS treatment of wild-type BMmphis or BMMCs increases the level of SHIP, but not SHIP2 or PTEN, and this increase is critical for the hyporesponsiveness to subsequent LPS stimulation. Interestingly, this increase in SHIP protein is mediated by the LPS-induced production of autocrine-acting TGFbeta and neutralizing antibodies to TGFbeta block LPS-induced endotoxin tolerance. In vivo studies with SHIP(+/+) and SHIP(-/-) mice confirm these in vitro findings and show a correlation between the duration of endotoxin tolerance and elevated SHIP levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.