Although IgE binding to mast cells is thought to be a passive presensitization step, we demonstrate herein that monomeric IgE (mIgE) in the absence of antigen (Ag) stimulates multiple phosphorylation events in normal murine bone marrow-derived mast cells (BMMCs). While mIgE does not induce degranulation or leukotriene synthesis, it leads to a more potent production of cytokines than IgE + Ag. Moreover, mIgE prevents the apoptosis of cytokine-deprived BMMCs, likely by maintaining Bcl-X(L) levels and producing autocrine-acting cytokines. The addition of Ag does not increase this IgE-induced survival. Since IgE concentrations as low as 0.1 microg/ml enhance BMMC survival, elevated plasma IgE levels in humans with atopic disorders may contribute to the elevated mast cell numbers seen in these individuals.
We recently reported that SHIP restrains LPS-induced classical (M1) activation of in vitro differentiated, bone marrow-derived macrophages (BMMPhis) and that SHIP upregulation is essential for endotoxin tolerance. Herein, we show that in vivo differentiated SHIP-/- peritoneal (PMPhis) and alveolar (AMPhis) macrophages, unlike their wild-type counterparts, are profoundly M2 skewed (alternatively activated), possessing constitutively high arginase I (ArgI) and Ym1 levels and impaired LPS-induced NO production. Consistent with this, SHIP-/- mice display M2-mediated lung pathology and enhanced tumor implant growth. Interestingly, BMMPhis from SHIP-/- mice do not display this M2 phenotype unless exposed to TGFbeta within normal mouse plasma (MP) during in vitro differentiation. Our results suggest that SHIP functions in vivo to repress M2 skewing and that macrophage polarization can occur during differentiation in response to TGFbeta if progenitors have elevated PIP3.
Summary The unfolded protein response (UPR) is a signaling pathway required to maintain endoplasmic reticulum (ER) homeostasis and hepatic lipid metabolism. Here, we identify an essential role for the inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α)-X-box binding protein 1 (XBP1) arm of the UPR in regulation of hepatic very low-density lipoprotein (VLDL) assembly and secretion. Hepatocyte-specific deletion of Ire1α reduces lipid partitioning into the ER lumen and impairs the assembly of triglyceride (TG)-rich VLDL, but does not affect TG synthesis, de novo lipogenesis, or the synthesis or secretion of apolipoprotein B (apoB). The defect in VLDL assembly is, at least in part, due to decreased microsomal triglyceride-transfer protein (MTP) activity resulting from reduced protein disulfide isomerase (PDI) expression. Collectively, our findings reveal a key role for the IRE1α-XBP1s-PDI axis in linking ER homeostasis with regulation of VLDL production and hepatic lipid homeostasis that may provide a therapeutic target for disorders of lipid metabolism.
Hodgkin lymphoma is characterized by an extensively dominant tumor microenvironment (TME) composed of different types of noncancerous immune cells with rare malignant cells. Characterization of the cellular components and their spatial relationship is crucial to understanding cross-talk and therapeutic targeting in the TME. We performed single-cell RNA sequencing of more than 127,000 cells from 22 Hodgkin lymphoma tissue specimens and 5 reactive lymph nodes, profi ling for the fi rst time the phenotype of the Hodgkin lymphoma-specifi c immune microenvironment at single-cell resolution. Single-cell expression profi ling identifi ed a novel Hodgkin lymphoma-associated subset of T cells with prominent expression of the inhibitory receptor LAG3, and functional analyses established this LAG3 + T-cell population as a mediator of immunosuppression. Multiplexed spatial assessment of immune cells in the microenvironment also revealed increased LAG3 + T cells in the direct vicinity of MHC class II-defi cient tumor cells. Our fi ndings provide novel insights into TME biology and suggest new approaches to immune-checkpoint targeting in Hodgkin lymphoma. SIGNIFICANCE:We provide detailed functional and spatial characteristics of immune cells in classic Hodgkin lymphoma at single-cell resolution. Specifi cally, we identifi ed a regulatory T-cell-like immunosuppressive subset of LAG3 + T cells contributing to the immune-escape phenotype. Our insights aid in the development of novel biomarkers and combination treatment strategies targeting immune checkpoints.
During lytic infection, herpes simplex virus subverts the host cell RNA polymerase II transcription machinery to efficiently express its own genome while repressing the expression of most cellular genes. The mechanism by which RNA polymerase II is directed to the viral delayed-early and late genes is still unresolved. We report here that RNA polymerase II is preferentally localized to viral replication compartments early after infection with herpes simplex virus type 1. Concurrent with recruitment of RNA polymerase II into viral compartments is a rapid and aberrant phosphorylation of the large subunit carboxy-terminal domain (CTD). Aberrant phosphorylation of the CTD requires early viral gene expression but is not dependent on viral DNA replication or on the formation of viral replication compartments. Localization of RNA polymerase II and modifications to the CTD may be instrumental in favoring transcription of viral genes and repressing specific transcription of cellular genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.