Let R be a commutative noetherian local ring and consider the set of isomorphism classes of indecomposable totally reflexive R-modules. We prove that if this set is finite, then either it has exactly one element, represented by the rank 1 free module, or R is Gorenstein and an isolated singularity (if R is complete, then it is even a simple hypersurface singularity). The crux of our proof is to argue that if the residue field has a totally reflexive cover, then R is Gorenstein or every totally reflexive R-module is free.
Abstract. Let R be a commutative noetherian local ring with residue field k and assume that it is not Gorenstein. In the minimal injective resolution of R, the injective envelope E of the residue field appears as a summand in every degree starting from the depth of R. The number of copies of E in degree i equals the k-vector space dimension of the cohomology module Ext i R (k, R). These dimensions, known as Bass numbers, form an infinite sequence of invariants of R about which little is known. We prove that it is non-decreasing and grows exponentially if R is Golod, a non-trivial fiber product, or Teter, or if it has radical cube zero.
Let R be a commutative noetherian local ring that is not Gorenstein. It is known that the category of totally reflexive modules over R is representation infinite, provided that it contains a non-free module. The main goal of this paper is to understand how complex the category of totally reflexive modules can be in this situation.Local rings (R, m) with m 3 = 0 are commonly regarded as the structurally simplest rings to admit diverse categorical and homological characteristics. For such rings we obtain conclusive results about the category of totally reflexive modules, modeled on the Brauer-Thrall conjectures. Starting from a nonfree cyclic totally reflexive module, we construct a family of indecomposable totally reflexive R-modules that contains, for every n ∈ N, a module that is minimally generated by n elements. Moreover, if the residue field R/m is algebraically closed, then we construct for every n ∈ N an infinite family of indecomposable and pairwise non-isomorphic totally reflexive R-modules, each of which is minimally generated by n elements. The modules in both families have periodic minimal free resolutions of period at most 2.
Abstract. Let (R, m) be a local ring and M and N finite R-modules. In this paper we give a formula for the degree of the polynomial giving the lengths of the modules Ext i R (M, N/m n N ). A number of corollaries are given and more general filtrations are also considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.