Stress-induced changes to the dendritic architecture of neurons have been demonstrated in numerous mammalian and invertebrate systems. Remodeling of dendrites varies tremendously among neuron types. During the stress-induced dauer stage of Caenorhabditis elegans, the IL2 neurons arborize to cover the anterior body wall. In contrast, the FLP neurons arborize to cover an identical receptive field during reproductive development. Using timecourse imaging, we show that branching between these two neuron types is highly coordinated. Furthermore, we find that the IL2 and FLP arbors have a similar dendritic architecture and use an identical downstream effector complex to control branching; however, regulation of this complex differs between stress-induced IL2 branching and FLP branching during reproductive development. We demonstrate that the unfolded protein response (UPR) sensor IRE-1, required for localization of the complex in FLP branching, is dispensable for IL2 branching at standard cultivation temperatures. Exposure of ire-1 mutants to elevated temperatures results in defective IL2 branching, thereby demonstrating a previously unknown genotype by environment interaction within the UPR. We find that the FOXO homolog, DAF-16, is required cell-autonomously to control arborization during stress-induced arborization. Likewise, several aspects of the dauer formation pathway are necessary for the neuron to remodel, including the phosphatase PTEN/DAF-18 and Cytochrome P450/DAF-9. Finally, we find that the TOR associated protein, RAPTOR/DAF-15 regulates mutually exclusive branching of the IL2 and FLP dendrites. DAF-15 promotes IL2 branching during dauer and inhibits precocious FLP growth. Together, our results shed light on molecular processes that regulate stress-mediated remodeling of dendrites across neuron classes.
Recent compelling evidence showed that innate immune effector cells could recognize allogeneic grafts and prime an adaptive immune response. Signal regulatory protein α (SIRPα) is an immunoglobulin superfamily receptor that is expressed on myeloid cells; the interaction between SIRPα and its ubiquitously expressed ligand CD47 elicits an inhibitory signal that suppresses macrophage phagocytic function. Additional studies showed that donor-recipient mismatch in SIRPα variants might activate monocytic allorecognition, possibly as the result of non-self SIRPα-CD47 interaction. However, the frequency of SIRPα variation and its role in hematopoietic stem cell transplantation (HSCT) remains unexplored. We studied 350 patients with acute myeloid leukemia/myelodysplastic syndrome who underwent HLA-matched related HSCT and found that SIRPα allelic mismatches were present in 39% of transplantation pairs. SIRPα variant mismatch was associated with a significantly higher rate of chronic graft-versus-host disease (GVHD; hazard ratio [HR], 1.5; P = .03), especially de novo chronic GVHD (HR, 2.0; P = .01), after adjusting for other predictors. Those with mismatched SIRPα had a lower relapse rate (HR, 0.6; P = .05) and significantly longer relapse-free survival (RFS; HR, 0.6; P = .04). Notably, the effect of SIRPα variant mismatch on relapse protection was most pronounced early after HSCT and in patients who were not in remission at HSCT (cumulative incidence, 73% vs 54%; HR, 0.5; P = .01). These findings show that SIRPα variant mismatch is associated with HSCT outcomes, possibly owing to innate allorecognition. SIRPα variant matching could provide valuable information for donor selection and risk stratification in HSCT.
Stress influences the shape of dendritic arbors in neurons. During the stress-induced dauer stage of Caenorhabditis elegans, the IL2 neurons arborize to cover the anterior body wall. In contrast, the FLP neurons arborize to cover the anterior body wall during non-dauer development.Previous work showed that the membrane-bound receptor DMA-1 regulates FLP branching as part of a larger protein complex. Using forward genetics, we show that the IL2 neurons also use the DMA-1 complex to regulate branching. To understand the coordination of the IL2s and FLPs we conducted a time-course examination of FLPs and found previously undescribed branching patterns indicating a neighborhood effect wherein the FLPs and IL2s in the anterior have differential branching compared to the more posteriorly located PVD arborizing neurons. To determine how the IL2s and FLPs differentially regulate branching, we examined several regulators of DMA-1 localization. We show that the unfolded protein response sensor IRE-1, required for FLP branching, is only required for dauer-specific branching at elevated temperatures. Interestingly, we found that ire-1 mutants have broad, organism-wide temperaturedependent effects on dauer remodeling, suggesting a previously undescribed role for IRE-1 in phenotypic plasticity. We also found that defects in other regulators of dauer remodeling including DAF-16/FOXO, DAF-9/Cytochrome P450, and DAF-18/PTEN are required for proper IL2 arborization, but dispensable for FLP branching. Interestingly, we find that TOR adaptor protein DAF-15/RAPTOR is both required for promoting IL2 branching and inhibiting precocious development of the FLPs. Our results demonstrate specific genotypic by environmental interactions regulating dendrite arborization.
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative therapy for hematologic malignancies. Alloreactivity after HSCT is known to be mediated by adaptive immune cells expressing rearranging receptors. Recent studies demonstrated that the innate immune system could likewise sense the non-self signals and subsequently enhance the alloimmune response. We recently demonstrated that the donor/recipient mismatch of signal regulatory protein α (SIRPα), an immunoglobulin receptor exclusively expressed on innate cells, is associated with a higher risk of cGVHD and relapse protection in a cohort of acute myeloid leukemia patients who underwent allo-HSCT. Whether these effects also occur in other hematologic malignancies remains unclear. In the present study, we compared outcomes by SIRPα match status in a cohort of 310 patients who received allo-HSCT from an HLA matched-related donor for the treatment of lymphoid malignancies. Multivariable analysis showed that SIRPα mismatch was associated with a significantly higher rate of cGVHD (hazard ratio [HR] 1.8, P= .002), cGVHD requiring systemic immunosuppressive therapy (HR 1.9, P= .005), a lower rate of disease progression (HR 0.5, P= .003) and improved progression-free survival (HR 0.5, P= .001). Notably, the effects of SIRPα mismatch were observed only in the patients who achieved >95% of donor T-cell chimerism. The mismatch in SIRPα is associated with favorable relapse protection and concurrently increased risk of cGVHD in patients who undergo allo-HSCT for lymphoid malignancies, and the optimal donor could be selected based on the finding of the study to mitigate the risk of GVHD and relapse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.