Stress-induced changes to the dendritic architecture of neurons have been demonstrated in numerous mammalian and invertebrate systems. Remodeling of dendrites varies tremendously among neuron types. During the stress-induced dauer stage of Caenorhabditis elegans, the IL2 neurons arborize to cover the anterior body wall. In contrast, the FLP neurons arborize to cover an identical receptive field during reproductive development. Using timecourse imaging, we show that branching between these two neuron types is highly coordinated. Furthermore, we find that the IL2 and FLP arbors have a similar dendritic architecture and use an identical downstream effector complex to control branching; however, regulation of this complex differs between stress-induced IL2 branching and FLP branching during reproductive development. We demonstrate that the unfolded protein response (UPR) sensor IRE-1, required for localization of the complex in FLP branching, is dispensable for IL2 branching at standard cultivation temperatures. Exposure of ire-1 mutants to elevated temperatures results in defective IL2 branching, thereby demonstrating a previously unknown genotype by environment interaction within the UPR. We find that the FOXO homolog, DAF-16, is required cell-autonomously to control arborization during stress-induced arborization. Likewise, several aspects of the dauer formation pathway are necessary for the neuron to remodel, including the phosphatase PTEN/DAF-18 and Cytochrome P450/DAF-9. Finally, we find that the TOR associated protein, RAPTOR/DAF-15 regulates mutually exclusive branching of the IL2 and FLP dendrites. DAF-15 promotes IL2 branching during dauer and inhibits precocious FLP growth. Together, our results shed light on molecular processes that regulate stress-mediated remodeling of dendrites across neuron classes.
Edited by Ned ManteiKeywords: RNAi Caenorhabditis elegans males Non-disjunction Kinesin-like protein Him phenotype dsRNA a b s t r a c t Rare Caenorhabditis elegans males arise when sex chromosome non-disjunction occurs during meiosis in self-fertilizing hermaphrodites. Non-disjunction is a relatively rare event, and males are typically observed at a frequency of less than one in five hundred wild-type animals. Males are required for genetic crosses and phenotypic analysis, yet current methods to generate large numbers of males can be cumbersome. Here, we identify RNAi reagents (dsRNA-expressing bacteria) with improved effectiveness for eliciting males. Specifically, we used RNAi to systematically reduce the expression of over two hundred genes with meiotic chromosome segregation functions, and we identified a set of RNAi reagents that robustly and reproducibly elicited male progeny.
Stress influences the shape of dendritic arbors in neurons. During the stress-induced dauer stage of Caenorhabditis elegans, the IL2 neurons arborize to cover the anterior body wall. In contrast, the FLP neurons arborize to cover the anterior body wall during non-dauer development.Previous work showed that the membrane-bound receptor DMA-1 regulates FLP branching as part of a larger protein complex. Using forward genetics, we show that the IL2 neurons also use the DMA-1 complex to regulate branching. To understand the coordination of the IL2s and FLPs we conducted a time-course examination of FLPs and found previously undescribed branching patterns indicating a neighborhood effect wherein the FLPs and IL2s in the anterior have differential branching compared to the more posteriorly located PVD arborizing neurons. To determine how the IL2s and FLPs differentially regulate branching, we examined several regulators of DMA-1 localization. We show that the unfolded protein response sensor IRE-1, required for FLP branching, is only required for dauer-specific branching at elevated temperatures. Interestingly, we found that ire-1 mutants have broad, organism-wide temperaturedependent effects on dauer remodeling, suggesting a previously undescribed role for IRE-1 in phenotypic plasticity. We also found that defects in other regulators of dauer remodeling including DAF-16/FOXO, DAF-9/Cytochrome P450, and DAF-18/PTEN are required for proper IL2 arborization, but dispensable for FLP branching. Interestingly, we find that TOR adaptor protein DAF-15/RAPTOR is both required for promoting IL2 branching and inhibiting precocious development of the FLPs. Our results demonstrate specific genotypic by environmental interactions regulating dendrite arborization.
Organisms used as model genomics systems are maintained as isogenic strains, yet evidence of sequence differences between independently maintained wild-type stocks has been substantiated by whole-genome resequencing data and strain-specific phenotypes. Sequence differences may arise from replication errors, transposon mobilization, meiotic gene conversion, or environmental or chemical assault on the genome. Low frequency alleles or mutations with modest effects on phenotypes can contribute to natural variation, and it has proven possible for such sequences to become fixed by adapted evolutionary enrichment and identified by resequencing. Our objective was to identify and analyze single locus genetic defects leading to RNAi resistance in isogenic strains of Caenorhabditis elegans. In so doing, we uncovered a mutation that arose de novo in an existing strain, which initially frustrated our phenotypic analysis. We also report experimental, environmental, and genetic conditions that can complicate phenotypic analysis of RNAi pathway defects. These observations highlight the potential for unanticipated mutations, coupled with genetic and environmental phenomena, to enhance or suppress the effects of known mutations and cause variation between wild-type strains.
We describe a workflow for efficient, environmentally attentive, and sustainable practices related to routine agarose gel electrophoresis. The methods reduce plastic waste and improve efficiency, especially for the exhaustive screening of difficult-to-obtain plasmids. Sustainability is increased when agarose is used ten times over by virtue of a thorough recycling regimen. The workflow optimizes workspaces and standardizes lab practices for handling potentially hazardous waste, minimizing environmental harm. Safety, efficiency, and sustainability improve laboratory productivity, help minimize environmental contamination, and increase cost-effectiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.