The utilization of UV excitation to verify the terahertz (THz) wave modulation of hexagonal-shaped metamaterial (MM) arrays coated with synthesized photoluminescent, down-shifting ZnO quantum dots (QDs) of two different radius sizes, namely, 3.00 nm (pH 10) and 2.12 nm (pH 12), respectively is reported. In order to characterize the behavior of the MM before and after deployment of the ZnO QDs, THz time domain spectroscopy in transmission mode was employed. Upon exposure to UV excitation, the collected amplitude modulation values were 9.21% for the pH 12 and 4.55% for the pH 10 ZnO QDs, respectively. It is anticipated that the ability to actively tune the performance of otherwise passive structures will promote the proliferation of THz signal modulation devices in the near future.
Stress dependent micromagnetic modeling based on the Landau–Lifshitz–Gilbert equations evinces a remarkable relationship between uniaxial stress in ferromagnetic (FM) thin films and the pumped spin current density, and elucidates the influence of compressive and tensile stress on the static and dynamic magnetization of FM thin films, and FM/normal-metal (NM) heterostructures. Thus, the presence of deformation in the structure through a stress-mediated magnetoelectric-coupling triggers a change in the magnetic anisotropy field in ferromagnets via magnetostriction. In our micromagnetic simulations we considered yttrium iron garnet (YIG) as the FM layer and platinum the NM for the spin-pumped current calculations, and the stress contribution was introduced as an additional term in the effective anisotropy constant which also comprised the magnetocrystalline and shape anisotropy contributions of YIG. Ostensibly, the dynamic control of the stress-dependent magnetization enables the tailoring of the magnetic anisotropy field to achieve the amplitude modulation of the pumped spin current density. The predicted ability to dynamically modulate the pumped spin current density is anticipated to benefit multifarious spintronic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.