Background: HMGN2 is an important nuclear protein that is involved in altering the chromatin structure and facilitating the transcriptional activation. Results: HMGN2 is modified by SUMO1 with help of E3 ligase PIAS1. Conclusion: HMGN2-SUMOylation is a significant factor in the regulation of chromatin structure and function. Significance: Our finding is the identification of the new modification of HMGN2.
Endoplasmic reticulum (ER) stress is emerging as a factor for the pathogenesis of granular corneal dystrophy type 2 (GCD2). This study was designed to investigate the molecular mechanisms underlying the protective effects of melatonin on ER stress in GCD2. Our results showed that GCD2 corneal fibroblasts were more susceptible to ER stress-induced death than were wild-type cells. Melatonin significantly inhibited GCD2 corneal cell death, caspase-3 activation, and poly (ADP-ribose) polymerase 1 cleavage caused by the ER stress inducer, tunicamycin. Under ER stress, melatonin significantly suppressed the induction of immunoglobulin heavy-chain-binding protein (BiP) and activation of inositol-requiring enzyme 1α (IRE1α), and their downstream target, alternative splicing of X-box binding protein 1(XBP1). Notably, the reduction in BiP and IRE1α by melatonin was suppressed by the ubiquitin-proteasome inhibitor, MG132, but not by the autophagy inhibitor, bafilomycin A1, indicating involvement of the ER-associated protein degradation (ERAD) system. Melatonin treatment reduced the levels of transforming growth factor-β-induced protein (TGFBIp) significantly, and this reduction was suppressed by MG132. We also found reduced mRNA expression of the ERAD system components HRD1 and SEL1L, and a reduced level of SEL1L protein in GCD2 cells. Interestingly, melatonin treatments enhanced SEL1L levels and suppressed the inhibition of SEL1L N-glycosylation caused by tunicamycin. In conclusion, this study provides new insights into the mechanisms by which melatonin confers its protective actions during ER stress. The results also indicate that melatonin might have potential as a therapeutic agent for ER stress-related diseases including GCD2.
Extracellular matrix (ECM) components play an important role in maintaining skeletal muscle function, but excessive accumulation of ECM components interferes with skeletal muscle regeneration after injury, eventually inducing fibrosis. Increased oxidative stress level caused by dystrophin deficiency is a key factor in fibrosis in Duchenne muscular dystrophy (DMD) patients. Mesenchymal stem cells (MSCs) are considered a promising therapeutic agent for various diseases involving fibrosis. In particular, the paracrine factors secreted by MSCs play an important role in the therapeutic effects of MSCs. In this study, we investigated the effects of MSCs on skeletal muscle fibrosis. In 2–5-month-old mdx mice intravenously injected with 1 × 105 Wharton’s jelly (WJ)-derived MSCs (WJ-MSCs), fibrosis intensity and accumulation of calcium/necrotic fibers were significantly decreased. To elucidate the mechanism of this effect, we verified the effect of WJ-MSCs in a hydrogen peroxide-induced fibrosis myotubes model. In addition, we demonstrated that matrix metalloproteinase-1 (MMP-1), a paracrine factor, is critical for this anti-fibrotic effect of WJ-MSCs. These findings demonstrate that WJ-MSCs exert anti-fibrotic effects against skeletal muscle fibrosis, primarily via MMP-1, indicating a novel target for the treatment of muscle diseases, such as DMD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.