In this article, a point-wise normal estimation network for three-dimensional point cloud data called NormNet is proposed. We propose the multiscale K-nearest neighbor convolution module for strengthened local feature extraction. With the multiscale K-nearest neighbor convolution module and PointNet-like architecture, we achieved a hybrid of three features: a global feature, a semantic feature from the segmentation network, and a local feature from the multiscale K-nearest neighbor convolution module. Those features, by mutually supporting each other, not only increase the normal estimation performance but also enable the estimation to be robust under severe noise perturbations or point deficiencies. The performance was validated in three different data sets: Synthetic CAD data (ModelNet), RGB-D sensor-based real 3D PCD (S3DIS), and LiDAR sensor-based real 3D PCD that we built and shared.
A cuboid is a geometric primitive characterized by six planes with spatial constraints, such as orthogonality and parallelism. These characteristics uniquely define a cuboid. Therefore, previous modeling schemes have used these characteristics as hard constraints, which narrowed the solution space for estimating the parameters of a cuboid. However, under high noise and occlusion conditions, a narrowed solution space may contain only false or no solutions, which is called an over-constraint. In this paper, we propose a robust cuboid modeling method for point clouds under high noise and occlusion conditions. The proposed method estimates the parameters of a cuboid using soft constraints, which, unlike hard constraints, do not limit the solution space. For this purpose, a cuboid is represented as a Gaussian mixture model (GMM). The point distribution of each cuboid surface owing to noise is assumed to be a Gaussian model. Because each Gaussian model is a face of a cuboid, the GMM shares the cuboid parameters and satisfies the spatial constraints, regardless of the occlusion. To avoid an over-constraint in the optimization, only soft constraints are employed, which is the expectation of the GMM. Subsequently, the soft constraints are maximized using analytic partial derivatives. The proposed method was evaluated using both synthetic and real data. The synthetic data were hierarchically designed to test the performance under various noise and occlusion conditions. Subsequently, we used real data, which are more dynamic than synthetic data and may not follow the Gaussian assumption. The real data are acquired by light detection and ranging-based simultaneous localization and mapping with actual boxes arbitrarily located in an indoor space. The experimental results indicated that the proposed method outperforms a previous cuboid modeling method in terms of robustness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.