Patents constitute an up-to-date source of competitive intelligence in technological development; thus, patent analysis has been a vital tool for identifying technological trends. Patent citation analysis is easy to use, but fundamentally has two main limitations: (1) new patents tend to be less cited than old ones and may miss citations to contemporary patents; (2) citation-based analysis cannot be used for patents in databases which do not require citations. Naturally, citation-based analysis tends to underestimate the importance of new patents and may not work in rapidly-evolving industries in which technology life-cycles are shortening and new inventions are increasingly patented worldwide. As a remedy, this paper proposes a patent network based on semantic patent analysis using subject-action-object (SAO) structures. SAO structures represent the explicit relationships among components used in a patent, and are considered to represent key concepts of the patent or the expertise of the inventor. Based on the internal similarities between patents, the patent network provides the up-to-date status of a given technology. Furthermore, this paper suggests new indices to identify the technological importance of patents, the characteristics of patent clusters, and the technological capabilities of competitors. The proposed method is illustrated using patents related to synthesis of carbon nanotubes. We expect that the proposed procedure and analysis will be incorporated into technology planning processes to assist experts such as researchers and R&D policy makers in rapidly-evolving industries.
This paper suggests a method for Subject-Action-Object (SAO) network analysis of patents for technology trends identification by using the concept of function. The proposed method solves the shortcoming of the keyword-based approach to identification of technology trends, i.e., that it cannot represent how technologies are used or for what purpose. The concept of function provides information on how a technology is used and how it interacts with other technologies; the keyword-based approach does not provide such information. The proposed method uses an SAO model and represents ''key concept'' instead of ''key word''. We present a procedure that formulates an SAO network by using SAO models extracted from patent documents, and a method that applies actor network theory to analyze technology implications of the SAO network. To demonstrate the effectiveness of the SAO network this paper presents a case study of patents related to Polymer Electrolyte Membrane technology in Proton Exchange Membrane Fuel Cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.